Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that $IoU$ can be directly used as a regression loss. However, $IoU$ has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of $IoU$ by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized $IoU$ ($GIoU$) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, $IoU$ based, and new, $GIoU$ based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
翻译:在物体探测基准中使用的最流行的评价尺度是UI(IoU),但是,在优化常用的距离损失以降低约束框参数的回归参数与尽量扩大这一计量值之间有差距。衡量标准的最佳目标是它本身。在轴对齐的 2D 约束框中,可以证明美元可以直接用作回归损失。然而,美元有一个高水平,使得在不重叠约束框的情况下无法优化。在本文件中,我们通过采用通用版本作为新的损失和新的衡量标准来解决美元值的弱点。通过将通用的美元(GIOU美元)作为损失纳入艺术物体探测框架,我们用标准、美元和新的美元基值衡量标准,如PACAL VOC和MSCOCO等大众物体探测基准的业绩计量,显示其业绩持续改善。