There has been a rich development of vector autoregressive (VAR) models for modeling temporally correlated multivariate outcomes. However, the existing VAR literature has largely focused on single subject parametric analysis, with some recent extensions to multi-subject modeling with known subgroups. Motivated by the need for flexible Bayesian methods that can pool information across heterogeneous samples in an unsupervised manner, we develop a novel class of non-parametric Bayesian VAR models based on heterogeneous multi-subject data. In particular, we propose a product of Dirichlet process mixture priors that enables separate clustering at multiple scales, which result in partially overlapping clusters that provide greater flexibility. We develop several variants of the method to cater to varying levels of heterogeneity. We implement an efficient posterior computation scheme and illustrate posterior consistency properties under reasonable assumptions on the true density. Extensive numerical studies show distinct advantages over competing methods in terms of estimating model parameters and identifying the true clustering and sparsity structures. Our analysis of resting state fMRI data from the Human Connectome Project reveals biologically interpretable differences between distinct fluid intelligence groups, and reproducible parameter estimates. In contrast, single-subject VAR analyses followed by permutation testing result in negligible differences, which is biologically implausible.
翻译:矢量自动递减(VAR)模型发展得非常丰富,用于模拟与时间相关的多变结果。然而,现有的VAR文献主要侧重于单一主题参数分析,最近又与已知的子群进行了一些扩展,与已知的子群进行了多个主题模型的模拟。我们受需要灵活巴伊西亚方法的驱动,这些方法能够以不受监督的方式将不同样本的信息汇集在一起,我们开发了新型的非参数贝伊西亚VAR模型,这些模型以不同多主题数据为基础。特别是,我们提出了一种Drichlet工艺混合物前端的产物,使得能够在多个尺度上进行单独组合,从而产生部分重叠的集群,从而具有更大的灵活性。我们开发了几种不同方法的变式,以适应不同程度的异异异异异性为不同。我们实施了高效的远端计算办法,并在对真实密度的合理假设下展示了子系一致性特性。我们广泛的数字研究表明,在估算模型参数和确定真实的组合和宽度结构方面,不同的方法具有明显的优势。我们从人类连接项目对状态数据所作的分析中可以看出,在生物上可以解释的差异,在不同的流值分析中,以可测测测为一种可测的参数。