We provide a general framework for constructing probability distributions on Riemannian manifolds, taking advantage of area-preserving maps and isometries. Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions that are straightforward to sample from, suitable for use within Monte Carlo algorithms and latent variable models, such as autoencoders. As an illustration, we empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model. Finally, we take advantage of the generalized description of this framework to posit questions for future work.
翻译:我们为利用区域保留地图和等离子体来构建里曼尼方块的概率分布提供了一个总体框架。对分布特性,例如参数、对称和模式的控制产生一个灵活分布的组合,这种组合可以直接从蒙特卡洛算法中取样,适合在蒙特卡洛算法和潜在变数模型中使用。举例来说,我们通过在变式自动编码器和潜伏空间网络模型中利用我们提议的分布来验证我们的方法。最后,我们利用这一框架的笼统描述来提出未来工作的问题。