In this work, we propose a high-order multiscale method for an elliptic model problem with rough and possibly highly oscillatory coefficients. Convergence rates of higher order are obtained using the regularity of the right-hand side only. Hence, no restrictive assumptions on the coefficient, the domain, or the exact solution are required. In the spirit of the Localized Orthogonal Decomposition, the method constructs coarse problem-adapted ansatz spaces by solving auxiliary problems on local subdomains. More precisely, our approach is based on the strategy presented by Maier [SIAM J. Numer. Anal. 59(2), 2021]. The unique selling point of the proposed method is an improved localization strategy curing the effect of deteriorating errors with respect to the mesh size when the local subdomains are not large enough. We present a rigorous a priori error analysis and demonstrate the performance of the method in a series of numerical experiments.
翻译:在本文中,我们提出了一种高阶多尺度方法来解决具有粗糙且可能高度振荡系数的椭圆模型问题。只需要右侧的正则性即可获得更高阶的收敛速度。因此,不需要在系数、域或精确解方面做出任何限制性假设。按照局部正交分解的精神,该方法通过在本地子域上解决辅助问题来构建粗略的问题适应性试探空间。更具体地说,我们的方法基于 Maier [SIAM J. Numer. Anal. 59(2), 2021] 提出的策略。所提出的方法的独特卖点是改进的本地化策略,通过治愈与网格大小不足够大的局部子域相关的劣化误差来实现。我们提供了一个严谨的先验误差分析,并在一系列数值实验中展示了该方法的性能。