Let $P=(p_1, p_2, \dots, p_n)$ be a polygonal chain in $\mathbb{R}^d$. The stretch factor of $P$ is the ratio between the total length of $P$ and the distance of its endpoints, $\sum_{i = 1}^{n-1} |p_i p_{i+1}|/|p_1 p_n|$. For a parameter $c \geq 1$, we call $P$ a $c$-chain if $|p_ip_j|+|p_jp_k| \leq c|p_ip_k|$, for every triple $(i,j,k)$, $1 \leq i<j<k \leq n$. The stretch factor is a global property: it measures how close $P$ is to a straight line, and it involves all the vertices of $P$; being a $c$-chain, on the other hand, is a fingerprint-property: it only depends on subsets of $O(1)$ vertices of the chain. We investigate how the $c$-chain property influences the stretch factor in the plane: (i) we show that for every $\varepsilon > 0$, there is a noncrossing $c$-chain that has stretch factor $\Omega(n^{1/2-\varepsilon})$, for sufficiently large constant $c=c(\varepsilon)$; (ii) on the other hand, the stretch factor of a $c$-chain $P$ is $O\left(n^{1/2}\right)$, for every constant $c\geq 1$, regardless of whether $P$ is crossing or noncrossing; and (iii) we give a randomized algorithm that can determine, for a polygonal chain $P$ in $\mathbb{R}^2$ with $n$ vertices, the minimum $c\geq 1$ for which $P$ is a $c$-chain in $O\left(n^{2.5}\ \mathrm{polylog}\ n\right)$ expected time and $O(n\log n)$ space. These results generalize to $\mathbb{R}^d$. For every dimension $d\geq 2$ and every $\varepsilon>0$, we construct a noncrossing $c$-chain that has stretch factor $\Omega\left(n^{(1-\varepsilon)(d-1)/d}\right)$; on the other hand, the stretch factor of any $c$-chain is $O\left((n-1)^{(d-1)/d}\right)$; for every $c>1$, we can test whether an $n$-vertex chain in $\mathbb{R}^d$ is a $c$-chain in $O\left(n^{3-1/d}\ \mathrm{polylog}\ n\right)$ expected time and $O(n\log n)$ space.


翻译:Lets (p) = (p_ 1, p_ 2, p_ 平地, p_n) 美元是多边形链, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元不是美元, 美元是美元, 美元是美元。 美元是美元, 美元不是美元, 美元是美元, 美元是美元, 美元不是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 美元, 美元是美元, 美元是美元,

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
0+阅读 · 2023年3月5日
Arxiv
0+阅读 · 2023年3月4日
Arxiv
0+阅读 · 2023年3月3日
Arxiv
0+阅读 · 2023年3月3日
Arxiv
0+阅读 · 2023年3月2日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关论文
Arxiv
0+阅读 · 2023年3月6日
Arxiv
0+阅读 · 2023年3月5日
Arxiv
0+阅读 · 2023年3月4日
Arxiv
0+阅读 · 2023年3月3日
Arxiv
0+阅读 · 2023年3月3日
Arxiv
0+阅读 · 2023年3月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员