We obtain a recurrence relation in $d$ for the average singular value $% \alpha (d)$ of a complex valued $d\times d$\ matrix $\frac{1}{\sqrt{d}}X$ with random i.i.d., N( 0,1) entries, and use it to show that $\alpha (d)$ decreases monotonically with $d$ to the limit given by the Marchenko-Pastur distribution.\ The monotonicity of $\alpha (d)$ has been recently conjectured by Bandeira, Kennedy and Singer in their study of the Little Grothendieck problem over the unitary group $\mathcal{U}_{d}$ \cite{BKS}, a combinatorial optimization problem. The result implies sharp global estimates for $\alpha (d)$, new bounds for the expected minimum and maximum singular values, and a lower bound for the ratio of the expected maximum and the expected minimum singular value. The proof is based on a connection with the theory of Tur\'{a}n determinants of orthogonal polynomials. We also discuss some applications to the problem that originally motivated the conjecture.
翻译:我们得到了一个重现的美元(d) 重现关系,其平均单值为 = ALpha (d) 美元(d) 美元,该复合体的价值为 $d_time d$\ 矩阵 $frac{1unsqrt{d<unk> X$, 随机i.d., N(0,1) 条目, 并用它来显示 $\ alpha (d) 单价以美元单价递减到 Marchenko-Pastur 分布所设定的限度。\ 白拉、 肯尼迪和辛格最近在对小格罗芬迪克问题的研究中预测 $\ mathcal{U<unk> d} $\ cite{BKS} 。 其结果意味着, 美元(d) 的全局估计值与预期最低值和最高单值的新界限, 以及预期最高值和最低单值的比值的下限值。 证据依据的是某种理论与Tur\\\ rodal deal dectural dectural dectural oral orizsal orizal orstal orgal ortical orizs.</s>