This paper focuses on the emerging paradigm shift of collision-inclusive motion planning and control for impact-resilient mobile robots, and develops a unified hierarchical framework for navigation in unknown and partially-observable cluttered spaces. At the lower-level, we develop a deformation recovery control and trajectory replanning strategy that handles collisions that may occur at run-time, locally. The low-level system actively detects collisions (via embedded Hall effect sensors on a mobile robot built in-house), enables the robot to recover from them, and locally adjusts the post-impact trajectory. Then, at the higher-level, we propose a search-based planning algorithm to determine how to best utilize potential collisions to improve certain metrics, such as control energy and computational time. Our method builds upon A* with jump points. We generate a novel heuristic function, and a collision checking and adjustment technique, thus making the A* algorithm converge faster to reach the goal by exploiting and utilizing possible collisions. The overall hierarchical framework generated by combining the global A* algorithm and the local deformation recovery and replanning strategy, as well as individual components of this framework, are tested extensively both in simulation and experimentally. An ablation study draws links to related state-of-the-art search-based collision-avoidance planners (for the overall framework), as well as search-based collision-avoidance and sampling-based collision-inclusive global planners (for the higher level). Results demonstrate our method's efficacy for collision-inclusive motion planning and control in unknown environments with isolated obstacles for a class of impact-resilient robots operating in 2D.
翻译:本文侧重于碰撞包容的动态规划和控制模式的新兴转变,以用于对撞击有抵抗力的流动机器人,并为在未知和部分可观测的封闭空间进行导航开发一个统一的等级框架。在较低层面,我们开发了一个变形恢复控制和轨迹再规划战略,处理在运行时可能发生的地方碰撞。低级别系统积极探测碰撞(通过内部建造的移动机器人上嵌入的Hall效应传感器,使机器人能够从中恢复过来,并在当地调整影响后轨迹。然后,在较高层面,我们提出一个基于搜索的高层规划算法,以确定如何最佳利用潜在碰撞来改进某些测量标准,例如控制能量和计算时间。我们的方法建立在A*上,我们产生了新的超自然功能,以及碰撞检查和调整技术,从而使A*算法通过利用基于内部的移动机器人来更快地达到目标,使机器人能够从中恢复过来,并在当地调整影响后的轨道轨迹。随后,我们提出一个基于全球A*算法和地方变形和再规划战略的等级框架,以及作为直径的轨道操作框架的单个分析工具,在持续进行。