In this paper, we address the problem of safe trajectory planning for autonomous search and exploration in constrained, cluttered environments. Guaranteeing safe navigation is a challenging problem that has garnered significant attention. This work contributes a method that generates guaranteed safety-critical search trajectories in a cluttered environment. Our approach integrates safety-critical constraints using discrete control barrier functions (DCBFs) with ergodic trajectory optimization to enable safe exploration. Ergodic trajectory optimization plans continuous exploratory trajectories that guarantee full coverage of a space. We demonstrate through simulated and experimental results on a drone that our approach is able to generate trajectories that enable safe and effective exploration. Furthermore, we show the efficacy of our approach for safe exploration of real-world single- and multi- drone platforms.
翻译:在本文中,我们讨论了在受限制、四分五裂的环境中自主搜索和探索的安全轨道规划问题。保障安全航行是一个引起极大关注的棘手问题。这项工作有助于在封闭的环境中产生有保障的安全临界搜索轨迹。我们的方法将使用离散控制屏障功能的安全临界限制与安全探索安全轨道优化结合起来。Ergodic轨迹优化计划持续探索探索轨迹,保证空间的完整覆盖。我们通过模拟和实验结果证明,我们的方法能够产生能够安全有效探索的轨迹。此外,我们展示了安全探索现实世界单一和多无人机平台的方法的有效性。