This work combines control barrier functions (CBFs) with a whole-body controller to enable self-collision avoidance for the MIT Humanoid. Existing reactive controllers for self-collision avoidance cannot guarantee collision-free trajectories as they do not leverage the robot's full dynamics, thus compromising kinematic feasibility. In comparison, the proposed CBF-WBC controller can reason about the robot's underactuated dynamics in real-time to guarantee collision-free motions. The effectiveness of this approach is validated in simulation. First, a simple hand-reaching experiment shows that the CBF-WBC enables the robot's hand to deviate from an infeasible reference trajectory to avoid self-collisions. Second, the CBF-WBC is combined with a linear model predictive controller (LMPC) designed for dynamic locomotion, and the CBF-WBC is used to track the LMPC predictions. Walking experiments show that adding CBFs avoids leg self-collisions when the footstep location or swing trajectory provided by the high-level planner are infeasible for the real robot, and generates feasible arm motions that improve disturbance recovery.
翻译:这项工作将控制屏障功能( CBFs) 与整个机体控制器( CBFs) 结合起来, 以使麻省理工学院人造材料能够避免自相碰撞。 现有的自相会避免反应控制器无法保证不发生碰撞的轨迹, 因为它们不能利用机器人的全部动态, 从而损害动态可行性。 相比之下, 拟议的 CBF- WBC 控制器可以实时解释机器人未充分起动的动态, 以保证不发生碰撞动作。 这种方法的有效性在模拟中得到验证。 首先, 简单的手部实验显示, CBFF- WBC 使机器人的手能够偏离一个不可行的参考轨迹, 以避免自相偏向。 其次, CBF- WBC 与一个设计用于动态电动的线型模型预测控制器( LMPC ) 相结合, 而 CBFF- WBC 用来跟踪LMPC 预测。 步实验显示, 当高层规划器提供的脚步步步步位置或摇动轨轨时, 当高水平计划器提供的脚步步步不可行时, 能够改善真正的机器人恢复时, 并产生真实的移动, 。