In network applications, it has become increasingly common to obtain datasets in the form of multiple networks observed on the same set of subjects, where each network is obtained in a related but different experiment condition or application scenario. Such datasets can be modeled by multilayer networks where each layer is a separate network itself while different layers are associated and share some common information. The present paper studies community detection in a stylized yet informative inhomogeneous multilayer network model. In our model, layers are generated by different stochastic block models, the community structures of which are (random) perturbations of a common global structure while the connecting probabilities in different layers are not related. Focusing on the symmetric two block case, we establish minimax rates for both \emph{global estimation} of the common structure and \emph{individualized estimation} of layer-wise community structures. Both minimax rates have sharp exponents. In addition, we provide an efficient algorithm that is simultaneously asymptotic minimax optimal for both estimation tasks under mild conditions. The optimal rates depend on the \emph{parity} of the number of most informative layers, a phenomenon that is caused by inhomogeneity across layers.


翻译:在网络应用中,以在同一组主题上观测到的多个网络的形式获取数据集已变得日益普遍,每个网络都是在相关但不同的实验条件或应用设想下获得的。这些数据集可以通过多层网络建模,其中每个层本身是一个单独的网络,而不同的层次是相互联系的,不同的层次是相互联系的,并且共享一些共同的信息。本文件研究以一个结构齐全但信息不均的多层网络模型来进行社区探测。在我们的模式中,两层是由不同的随机结构块模型生成的,其群落结构是共同全球结构的(随机)扰动,而不同层次的连接概率是无关的。侧重于对称的两个区块案例,我们为共同结构的emph{全球估计} 和跨层群落结构的\emph{ 个别估计} 建立了迷你马克思率。两种微缩压率都有清晰的分数。此外,我们提供了一种高效的算法,即共同全球结构(随机)的小型结构结构,而不同层次的概率是相交错的,而不同层次的概率是无关的。在对等情况下,最佳比率取决于层次的层次的。最优的层次的。

0
下载
关闭预览

相关内容

在网络中发现社区(称为社区检测/发现)是网络科学中的一个基本问题,在过去的几十年中引起了很多关注。 近年来,随着对大数据的大量研究,另一个相关但又不同的问题(称为社区搜索)旨在寻找包含查询节点的最有可能的社区,这已引起了学术界和工业界的广泛关注,它是社区检测问题的依赖查询的变体。
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员