In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters

9
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/

Recently, adaptive inference is gaining increasing attention due to its high computational efficiency. Different from existing works, which mainly exploit architecture redundancy for adaptive network design, in this paper, we focus on spatial redundancy of input samples, and propose a novel Resolution Adaptive Network (RANet). Our motivation is that low-resolution representations can be sufficient for classifying "easy" samples containing canonical objects, while high-resolution features are curial for recognizing some "hard" ones. In RANet, input images are first routed to a lightweight sub-network that efficiently extracts coarse feature maps, and samples with high confident predictions will exit early from the sub-network. The high-resolution paths are only activated for those "hard" samples whose previous predictions are unreliable. By adaptively processing the features in varying resolutions, the proposed RANet can significantly improve its computational efficiency. Experiments on three classification benchmark tasks (CIFAR-10, CIFAR-100 and ImageNet) demonstrate the effectiveness of the proposed model in both anytime prediction setting and budgeted batch classification setting.

0
5
下载
预览

Current state-of-the-art convolutional architectures for object detection are manually designed. Here we aim to learn a better architecture of feature pyramid network for object detection. We adopt Neural Architecture Search and discover a new feature pyramid architecture in a novel scalable search space covering all cross-scale connections. The discovered architecture, named NAS-FPN, consists of a combination of top-down and bottom-up connections to fuse features across scales. NAS-FPN, combined with various backbone models in the RetinaNet framework, achieves better accuracy and latency tradeoff compared to state-of-the-art object detection models. NAS-FPN improves mobile detection accuracy by 2 AP compared to state-of-the-art SSDLite with MobileNetV2 model in [32] and achieves 48.3 AP which surpasses Mask R-CNN [10] detection accuracy with less computation time.

0
7
下载
预览

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

0
9
下载
预览

Transferring image-based object detectors to domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between performance and computational complexity. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can hinder it from establishing the spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparse strides and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense feature Transforming (DFT) are introduced to model temporal appearance and enrich feature representation respectively. Finally, a novel framework for video object detection is proposed. Experiments on ImageNet VID are conducted. Our framework achieves a state-of-the-art speed-accuracy trade-off with significantly reduced model capacity.

0
4
下载
预览

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

0
11
下载
预览

Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for both tasks, resulting in degraded performance due to the incompatibility of the two tasks. To address this issue, we propose to perform classification and regression on features of different characteristics, extracted by two network branches of different designs. Concretely, the regression branch extracts rotation-sensitive features by actively rotating the convolutional filters, while the classification branch extracts rotation-invariant features by pooling the rotation-sensitive features. The proposed method named Rotation-sensitive Regression Detector (RRD) achieves state-of-the-art performance on three oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17 and COCO-Text. Furthermore, RRD achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.

0
12
下载
预览

With pervasive applications of medical imaging in health-care, biomedical image segmentation plays a central role in quantitative analysis, clinical diagno- sis, and medical intervention. Since manual anno- tation su ers limited reproducibility, arduous e orts, and excessive time, automatic segmentation is desired to process increasingly larger scale histopathological data. Recently, deep neural networks (DNNs), par- ticularly fully convolutional networks (FCNs), have been widely applied to biomedical image segmenta- tion, attaining much improved performance. At the same time, quantization of DNNs has become an ac- tive research topic, which aims to represent weights with less memory (precision) to considerably reduce memory and computation requirements of DNNs while maintaining acceptable accuracy. In this paper, we apply quantization techniques to FCNs for accurate biomedical image segmentation. Unlike existing litera- ture on quantization which primarily targets memory and computation complexity reduction, we apply quan- tization as a method to reduce over tting in FCNs for better accuracy. Speci cally, we focus on a state-of- the-art segmentation framework, suggestive annotation [22], which judiciously extracts representative annota- tion samples from the original training dataset, obtain- ing an e ective small-sized balanced training dataset. We develop two new quantization processes for this framework: (1) suggestive annotation with quantiza- tion for highly representative training samples, and (2) network training with quantization for high accuracy. Extensive experiments on the MICCAI Gland dataset show that both quantization processes can improve the segmentation performance, and our proposed method exceeds the current state-of-the-art performance by up to 1%. In addition, our method has a reduction of up to 6.4x on memory usage.

0
5
下载
预览

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

0
9
下载
预览

Robust cross-seasonal localization is one of the major challenges in long-term visual navigation of autonomous vehicles. In this paper, we exploit recent advances in semantic segmentation of images, i.e., where each pixel is assigned a label related to the type of object it represents, to solve the problem of long-term visual localization. We show that semantically labeled 3D point maps of the environment, together with semantically segmented images, can be efficiently used for vehicle localization without the need for detailed feature descriptors (SIFT, SURF, etc.). Thus, instead of depending on hand-crafted feature descriptors, we rely on the training of an image segmenter. The resulting map takes up much less storage space compared to a traditional descriptor based map. A particle filter based semantic localization solution is compared to one based on SIFT-features, and even with large seasonal variations over the year we perform on par with the larger and more descriptive SIFT-features, and are able to localize with an error below 1 m most of the time.

0
7
下载
预览

Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a novel architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes one third of a second for a typical image.

0
3
下载
预览
小贴士
相关论文
Le Yang,Yizeng Han,Xi Chen,Shiji Song,Jifeng Dai,Gao Huang
5+阅读 · 2020年3月16日
Golnaz Ghiasi,Tsung-Yi Lin,Ruoming Pang,Quoc V. Le
7+阅读 · 2019年4月16日
Shuhan Chen,Xiuli Tan,Ben Wang,Xuelong Hu
9+阅读 · 2019年4月15日
Chaoxu Guo,Bin Fan,Jie Gu,Qian Zhang,Shiming Xiang,Veronique Prinet,Chunhong Pan
4+阅读 · 2019年3月21日
Mason Liu,Menglong Zhu
11+阅读 · 2018年3月28日
Minghui Liao,Zhen Zhu,Baoguang Shi,Gui-song Xia,Xiang Bai
12+阅读 · 2018年3月14日
Xiaowei Xu,Qing Lu,Yu Hu,Lin Yang,Sharon Hu,Danny Chen,Yiyu Shi
5+阅读 · 2018年3月13日
Yuhua Chen,Wen Li,Christos Sakaridis,Dengxin Dai,Luc Van Gool
9+阅读 · 2018年3月8日
Erik Stenborg,Carl Toft,Lars Hammarstrand
7+阅读 · 2018年1月16日
Jonathan Long,Evan Shelhamer,Trevor Darrell
3+阅读 · 2015年3月8日
相关VIP内容
相关资讯
已删除
AI掘金志
5+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
15+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
17+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
24+阅读 · 2017年11月16日
【推荐】全卷积语义分割综述
机器学习研究会
17+阅读 · 2017年8月31日
Top