Popular network pruning algorithms reduce redundant information by optimizing hand-crafted parametric models, and may cause suboptimal performance and long time in selecting filters. We innovatively introduce non-parametric modeling to simplify the algorithm design, resulting in an automatic and efficient pruning approach called EPruner. Inspired by the face recognition community, we use a message passing algorithm Affinity Propagation on the weight matrices to obtain an adaptive number of exemplars, which then act as the preserved filters. EPruner breaks the dependency on the training data in determining the "important" filters and allows the CPU implementation in seconds, an order of magnitude faster than GPU based SOTAs. Moreover, we show that the weights of exemplars provide a better initialization for the fine-tuning. On VGGNet-16, EPruner achieves a 76.34%-FLOPs reduction by removing 88.80% parameters, with 0.06% accuracy improvement on CIFAR-10. In ResNet-152, EPruner achieves a 65.12%-FLOPs reduction by removing 64.18% parameters, with only 0.71% top-5 accuracy loss on ILSVRC-2012. Code can be available at https://github.com/lmbxmu/EPruner.


翻译:大众网络运行算法通过优化手工制作的参数模型来减少冗余信息,并可能导致亚最佳性能和选择过滤器的时间长。 我们创新地采用非参数模型来简化算法设计,从而产生一个称为 EPruner 的自动高效修剪方法。 在面部识别界的启发下,我们在重量矩阵上使用信息传递算法Affindity Propagation, 以获得一个可调适的缩略图数,然后作为保存的过滤器。 EPruner打破了在确定“重要”过滤器方面对培训数据的依赖,并允许在秒内执行CPU,这是比基于 GPU 的 SOTAs 更快的一个数量级级。 此外,我们显示Explators的重量为微调提供了更好的初始化。 在 VGGNet-16 上, EPrunerera 达到76.34%-FLOPs, 去除88.80%的参数, CIFARFAR-10。 在ResNet-152中, EPR 将一个65.12-FLOPs 递减为65.% 。 我们 AS 1 AS 1 AS 1 AS 1 最高损失代码。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年2月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
ExGAN: Adversarial Generation of Extreme Samples
Arxiv
0+阅读 · 2021年3月15日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年2月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员