Efficient point cloud representation is a fundamental element of Lidar-based 3D object detection. Recent grid-based detectors usually divide point clouds into voxels or pillars and construct single-stream networks in Bird's Eye View. However, these point cloud encoding paradigms underestimate the point representation in the vertical direction, which cause the loss of semantic or fine-grained information, especially for vertical sensitive objects like pedestrian and cyclists. In this paper, we propose an explicit vertical multi-scale representation learning framework, VPFusion, to combine the complementary information from both voxel and pillar streams. Specifically, VPFusion first builds upon a sparse voxel-pillar-based backbone. The backbone divides point clouds into voxels and pillars, then encodes features with 3D and 2D sparse convolution simultaneously. Next, we introduce the Sparse Fusion Layer (SFL), which establishes a bidirectional pathway for sparse voxel and pillar features to enable the interaction between them. Additionally, we present the Dense Fusion Neck (DFN) to effectively combine the dense feature maps from voxel and pillar branches with multi-scale. Extensive experiments on the large-scale Waymo Open Dataset and nuScenes Dataset demonstrate that VPFusion surpasses the single-stream baselines by a large margin and achieves state-of-the-art performance with real-time inference speed.


翻译:点云表示效率是基于 Lidar 的 3D 目标检测中的一个基本元素。最近的基于网格的检测器通常将点云分为体素或柱,并在 Bird's Eye View 中构建单流网络。然而,这些点云编码范式低估了垂直方向上的点表示,这会导致语义或细粒度信息的丢失,特别是对于垂直敏感的对象(如行人和骑车人)。在本文中,我们提出了一个明确的垂直多尺度表示学习框架 VPFusion,以结合来自体素和柱流的互补信息。具体而言,VPFusion 首先建立在稀疏的基于体素和柱的骨干上。骨干将点云分为体素和柱,然后同时使用 3D 和 2D 稀疏卷积编码特征。接下来,我们介绍了稀疏融合层(SFL),它为稀疏体素和柱特征建立了双向路径,以使它们之间产生交互。此外,我们提出了密集融合颈(DFN),以有效地结合来自体素和柱分支的多尺度密集特征图。对大规模 Waymo 开放数据集和 nuScenes 数据集进行的广泛实验表明,VPFusion 超过了单流基线,实时推断速度达到了最先进水平。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
大白话用Transformer做BEV 3D目标检测
PaperWeekly
1+阅读 · 2022年6月7日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月21日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关VIP内容
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员