Automatic speaker verification systems are vulnerable to a variety of access threats, prompting research into the formulation of effective spoofing detection systems to act as a gate to filter out such spoofing attacks. This study introduces a simple attention module to infer 3-dim attention weights for the feature map in a convolutional layer, which then optimizes an energy function to determine each neuron's importance. With the advancement of both voice conversion and speech synthesis technologies, unseen spoofing attacks are constantly emerging to limit spoofing detection system performance. Here, we propose a joint optimization approach based on the weighted additive angular margin loss for binary classification, with a meta-learning training framework to develop an efficient system that is robust to a wide range of spoofing attacks for model generalization enhancement. As a result, when compared to current state-of-the-art systems, our proposed approach delivers a competitive result with a pooled EER of 0.99% and min t-DCF of 0.0289.


翻译:自动扬声器核查系统易受各种进入威胁的影响,促使研究制定有效的潜伏探测系统,作为过滤这种潜伏攻击的大门。本研究引入了一个简单的关注模块,用于推导进进化层地图特征图的三维维注意权重,然后优化能量功能以确定每个神经元的重要性。随着语音转换和语音合成技术的进步,隐蔽的潜伏攻击不断出现,以限制探测系统的性能。在这里,我们提议以加权添加角边距损失为二进制分类,并有一个元化学习培训框架,以开发一个高效系统,能够对广泛的潜伏攻击进行强力,用于增强模型的普及化。因此,与目前最先进的系统相比,我们提出的方法带来了竞争结果,将ER组合为0.99 % 和 mint-DCF (0.0289), 其组合为0.299 % 和 mint-DCF (0.0289) 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员