We introduce appropriate computable moduli of smoothness to characterize the rate of best approximation by multivariate polynomials on a connected and compact $C^2$-domain $\Omega\subset \mathbb{R}^d$. This new modulus of smoothness is defined via finite differences along the directions of coordinate axes, and along a number of tangential directions from the boundary. With this modulus, we prove both the direct Jackson inequality and the corresponding inverse for the best polynomial approximation in $L_p(\Omega)$. The Jackson inequality is established for the full range of $0<p\leq \infty$, while its proof relies on a recently established Whitney type estimates with constants depending only on certain parameters; and on a highly localized polynomial partitions of unity on a $C^2$-domain which is of independent interest. The inverse inequality is established for $1\leq p\leq \infty$, and its proof relies on a recently proved Bernstein type inequality associated with the tangential derivatives on the boundary of $\Omega$. Such an inequality also allows us to establish the inverse theorem for Ivanov's average moduli of smoothness on general compact $C^2$-domains.
翻译:我们引入了适当的平滑折算模式, 来描述多变多式多式多式组合( 美元) 多式组合( 美元) 多式组合( 美元) 多式组合( 美元) 多式组合( 美元) 的最佳近似率 。 这种新的平滑模式是通过坐标轴方向和边界一些相近方向的有限差异来定义的。 有了这个模式, 我们既证明了杰克逊的直接不平等性, 也证明了美元( 美元) 最佳多式组合( 美元) 的最佳多式组合( 美元) 。 Jackson 不平等性是针对 $( 美元) 和 美元( 美元) 建立起来的, 而其证据则是针对最近证明的 Bernstein2 类型( 美元) 的完整范围, 而其证据则取决于最近建立的、 仅取决于某些参数的恒定的惠特尼( ) 类型估算值; 以及一个具有独立利益的 $( 美元) 的高度本地化多式多式组合。 其反不平等性为$( p\ q q) 和最近证明的Bernstein 格式( 美元) 等的不平等性( ) 等值( ) 等值( ) ) 等值( ) 等值( ) 等值( ) 等值) 等值( 等值) 等值( ) 等值( 等值) 等值( ) 等值( ) 等值) 等值( ) 等值( 等值) 等值( 等值) 等值( 等值) 等值( 等值( 等值) 等值) 等值( ) 等值( ) ) 等值( ) 等值) ) ) 等值( ) ) 等值( 等值( 等值) 等值( 等值( 等值( 等值) 等值) 等值) 等值( 等值) 等值) 等值( 等值) 等值) 等值( 等值( 等值( ) 等值( 等值) 等值) 等值