In this article, we study approximation properties of the variation spaces corresponding to shallow neural networks with a variety of activation functions. We introduce two main tools for estimating the metric entropy, approximation rates, and $n$-widths of these spaces. First, we introduce the notion of a smoothly parameterized dictionary and give upper bounds on the non-linear approximation rates, metric entropy and $n$-widths of their absolute convex hull. The upper bounds depend upon the order of smoothness of the parameterization. This result is applied to dictionaries of ridge functions corresponding to shallow neural networks, and they improve upon existing results in many cases. Next, we provide a method for lower bounding the metric entropy and $n$-widths of variation spaces which contain certain classes of ridge functions. This result gives sharp lower bounds on the $L^2$-approximation rates, metric entropy, and $n$-widths for variation spaces corresponding to neural networks with a range of important activation functions, including ReLU$^k$ activation functions and sigmoidal activation functions with bounded variation.
翻译:在文章中,我们研究与具有各种激活功能的浅神经网络相对应的变异空间的近似特性。我们引入了两种主要工具来估计这些空格的公吨、近似速率和美元维度。首先,我们引入了光滑参数字典的概念,并给出非线性近似率、公吨和美元维度的高度界限。上界取决于参数光滑度的顺序。这一结果适用于与浅神经网络相对应的脊函数的词典,并在许多情况下改进现有结果。接下来,我们提供了一种方法,用以降低包含某些级脊功能的非线性近似率、公吨和美元维度的宽度,并给出了非线性近近率、公吨和美元维度的上限。这一结果使与具有一系列重要激活功能的神经网络相对应变空间,包括RELU$ZQQKK值的激活功能和带有定型激活功能的恒定的移动。