Deep learning (DL) has emerged as a powerful tool for accelerated MRI reconstruction, but these methods often necessitate a database of fully-sampled measurements for training. Recent self-supervised and unsupervised learning approaches enable training without fully-sampled data. However, a database of undersampled measurements may not be available in many scenarios, especially for scans involving contrast or recently developed translational acquisitions. Moreover, database-trained models may not generalize well when the unseen measurements differ in terms of sampling pattern, acceleration rate, SNR, image contrast, and anatomy. Such challenges necessitate a new methodology that can enable scan-specific DL MRI reconstruction without any external training datasets. In this work, we propose a zero-shot self-supervised learning approach to perform scan-specific accelerated MRI reconstruction to tackle these issues. The proposed approach splits available measurements for each scan into three disjoint sets. Two of these sets are used to enforce data consistency and define loss during training, while the last set is used to establish an early stopping criterion. In the presence of models pre-trained on a database with different image characteristics, we show that the proposed approach can be combined with transfer learning to further improve reconstruction quality.


翻译:深度学习(DL)已成为加速磁共振重建的有力工具,但是,这些方法往往需要建立一个全面抽样的训练计量数据库。最近自我监督和未经监督的学习方法使得培训无需全面抽样数据即可进行。然而,在许多假设情况下,特别是涉及对比或最近开发的翻译获取的扫描,可能无法建立抽样模式、加速率、SNR、图像对比和解剖方面的无形测量方法不同时,数据库中经过培训的模型可能无法全面推广。这类挑战要求采用新的方法,以便能够在没有外部培训数据集的情况下进行扫描特定的 DL MRI 重建。在这项工作中,我们建议采用零点点自我监督的学习方法,进行扫描特定的加速 MRI 重建,以解决这些问题。拟议的方法将每次扫描的可用测量方法分成三套脱节。其中两套用于执行数据一致性和界定培训期间的损失,而最后一套用于建立早期停止标准。在有不同图像特性的数据库上预先培训的模型存在时,我们提议采用零点自我监督的学习方法,以进一步学习。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
5+阅读 · 2020年3月17日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员