Deep learning based generative adversarial networks (GAN) can effectively perform image reconstruction with under-sampled MR data. In general, a large number of training samples are required to improve the reconstruction performance of a certain model. However, in real clinical applications, it is difficult to obtain tens of thousands of raw patient data to train the model since saving k-space data is not in the routine clinical flow. Therefore, enhancing the generalizability of a network based on small samples is urgently needed. In this study, three novel applications were explored based on parallel imaging combined with the GAN model (PI-GAN) and transfer learning. The model was pre-trained with public Calgary brain images and then fine-tuned for use in (1) patients with tumors in our center; (2) different anatomies, including knee and liver; (3) different k-space sampling masks with acceleration factors (AFs) of 2 and 6. As for the brain tumor dataset, the transfer learning results could remove the artifacts found in PI-GAN and yield smoother brain edges. The transfer learning results for the knee and liver were superior to those of the PI-GAN model trained with its own dataset using a smaller number of training cases. However, the learning procedure converged more slowly in the knee datasets compared to the learning in the brain tumor datasets. The reconstruction performance was improved by transfer learning both in the models with AFs of 2 and 6. Of these two models, the one with AF=2 showed better results. The results also showed that transfer learning with the pre-trained model could solve the problem of inconsistency between the training and test datasets and facilitate generalization to unseen data.


翻译:深层学习基础的基因对抗网络(GAN)能够有效地利用低印的MR数据进行图像重建。一般而言,需要大量培训样本来改进某个模型的重建性能。然而,在真正的临床应用中,很难获得数万个原始病人数据来培训模型,因为保存 k-空间数据并不在常规临床流中。因此,迫切需要加强基于小样本的网络的可普及性。在这项研究中,根据平行成像以及GAN模型(PI-GAN)和转移学习,探索了三个新应用程序。该模型先用公开的卡尔加里脑图象进行初步培训,然后加以微调,用于(1) 我们中心有肿瘤的病人;(2) 不同的解剖术,包括膝盖和肝脏;(3) 不同的K-空间取样面具,其加速系数(AF)为2和6. 因此,转移学习结果可以消除PI-GAN模型中发现的东西,产生更平稳的大脑边缘。膝部和肝脏之间的转移学习结果比PI-GAN模型高得多。在学习模型中学习了两个数据库的学习过程。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月7日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员