The separation of performance metrics from gradient based loss functions may not always give optimal results and may miss vital aggregate information. This paper investigates incorporating a performance metric alongside differentiable loss functions to inform training outcomes. The goal is to guide model performance and interpretation by assuming statistical distributions on this performance metric for dynamic weighting. The focus is on van Rijsbergens $F_{\beta}$ metric -- a popular choice for gauging classification performance. Through distributional assumptions on the $F_{\beta}$, an intermediary link can be established to the standard binary cross-entropy via dynamic penalty weights. First, the $F_{\beta}$ metric is reformulated to facilitate assuming statistical distributions with accompanying proofs for the cumulative density function. These probabilities are used within a knee curve algorithm to find an optimal $\beta$ or $\beta_{opt}$. This $\beta_{opt}$ is used as a weight or penalty in the proposed weighted binary cross-entropy. Experimentation on publicly available data with imbalanced classes mostly yields better and interpretable results as compared to the baseline. For example, for the IMDB text data with known labeling errors, a 14% boost is shown. This methodology can accelerate training and provide better interpretation.
翻译:将性能指标与基于梯度的损失函数分开,不一定总能产生最佳结果,而且可能错失重要的总体信息。本文件调查了将性能指标与不同的损失函数结合纳入,以便为培训结果提供信息。目的是通过假设动态加权性能指标的统计分布来指导示范性业绩和解释。重点是van Rijsbergens $F ⁇ beta} 美元(一种衡量分类性能的流行选择)。通过对$F ⁇ beta}的分布性假设,可以通过动态惩罚重量与标准的双胞胎交叉体连接。首先,重订了$F ⁇ beta} 指标,以便利假设统计分布,同时附上累积密度函数的证明。这些概率在膝盖曲线算法中用于找到最佳的$\beta$或$\betaopp}美元(一种衡量分类性绩效的流行性选择)。在拟议的加权的双胞胎体交叉体加权中,可以使用中间链接作为重量或惩罚。对公共数据进行实验,以不平衡的等级进行多数产生更好的和可解释的结果。 与基线方法相比,可以提供更好的加速的数据解释。