As it is known, universal codes, which estimate the entropy rate consistently, exist for stationary ergodic sources over any finite alphabet but not over a countably infinite one. We cast the problem of universal coding into the problem of universal densities with respect to a given reference measure on a countably generated measurable space, examples being the counting measure or the Lebesgue measure. We show that universal densities, which estimate the differential entropy rate consistently, exist if the reference measure is finite, which disproves that the assumption of a finite alphabet is necessary in some sense. To exhibit a universal density, we combine the prediction by partial matching (PPM) code with the recently proposed non-parametric differential (NPD) entropy rate estimator, extended by putting a prior both over all Markov orders and all quantization levels. The proof of universality applies Barron's asymptotic equipartition for densities and continuity of $f$-divergences for filtrations. As an application, we demonstrate that any universal density induces a strongly consistent Ces\`aro mean estimator of the conditional density given an infinite past, which solves the problem of universal prediction with the $0-1$ loss for a countable alphabet, by the way. We also show that there exists a strongly consistent entropy rate estimator with respect to the Lebesgue measure in the class of stationary ergodic Gaussian processes.
翻译:众所周知, 持续估算恒温率的通用代码, 对任何限定字母的固定性雌性源都存在, 而不是一个可以计算到的无限。 我们把通用编码问题放在一个可以计算到的可计算空间上, 在一个可观的可测量空间上, 即计算测量或 Lebesgue 测量, 将某个特定参照度的通用度度度度测量的通用编码问题放在一起。 我们表明, 如果参考度测值是有限的, 则普遍性( 测算率的差异性) 标准就存在, 这与某些意义上的假设必须有一个限定性字母的假设性。 为了显示普遍密度, 我们通过部分匹配( PPM) 代码和最近提议的非参数差异性( NPD) 测试率测量器的通用编码问题, 通过对所有Markov 命令和所有四分位度度测量等级的预先设定一个参数来扩大。 普遍性的证明是, Barron 的密度是测量密度和 $- 缩度测算的连续性。 作为应用, 我们证明, 任何普遍性密度的假设性( ) 都引导一个精确性( Cales- lago) 标准的精确) 的精确的精确度的精确度,, 以显示一个持续的精确度, 标准的精确度的精确度的精确度,, 水平的计算。