Most automatic speech processing systems register degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a neural network jointly trained to extract speech/non-speech segments, speech-to-noise ratios, and C50room acoustics from single-channel recordings. Brouhaha is trained using a data-driven approach in which noisy and reverberant audio segments are synthesized. We first evaluate its performance and demonstrate that the proposed multi-task regime is beneficial. We then present two scenarios illustrating how Brouhaha can be used on naturally noisy and reverberant data: 1) to investigate the errors made by a speaker diarization model (pyannote.audio); and 2) to assess the reliability of an automatic speech recognition model (Whisper from OpenAI). Both our pipeline and a pretrained model are open source and shared with the speech community.
翻译:暂无翻译