Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on an unlabeled target domain by utilizing the supervised model trained on a labeled source domain. In this work, we propose Semantic-Guided Pixel Contrast (SePiCo), a novel one-stage adaptation framework that highlights the semantic concepts of individual pixels to promote learning of class-discriminative and class-balanced pixel representations across domains, eventually boosting the performance of self-training methods. Specifically, to explore proper semantic concepts, we first investigate a centroid-aware pixel contrast that employs the category centroids of the entire source domain or a single source image to guide the learning of discriminative features. Considering the possible lack of category diversity in semantic concepts, we then blaze a trail of distributional perspective to involve a sufficient quantity of instances, namely distribution-aware pixel contrast, in which we approximate the true distribution of each semantic category from the statistics of labeled source data. Moreover, such an optimization objective can derive a closed-form upper bound by implicitly involving an infinite number of (dis)similar pairs, making it computationally efficient. Extensive experiments show that SePiCo not only helps stabilize training but also yields discriminative representations, making significant progress on both synthetic-to-real and daytime-to-nighttime adaptation scenarios.


翻译:在这项工作中,我们提出一个创新的单阶段适应框架(SePiCo),它强调个体像素的语义概念,以促进学习不同等级和类别平衡的像素表达方式,最终提高自我培训方法的性能。具体地说,为了探索适当的语义概念,我们首先调查一个使用整个源域的类别中间体或单一源图像来指导歧视特征学习的超小型源图像对比器(SePiCo),这是一个创新的单阶段适应框架,它强调个体像素的语义概念,以促进学习不同等级和类平衡像素表达方式,最终提升自我培训方法的性能。具体地说,为了探索适当的语义学概念,我们首先调查一个使用整个源域的类别中间体对等的像素对比,或者使用单一源图像来指导歧视特征的学习。考虑到语义概念中可能缺乏类别多样性,我们随后将分配观点的一小串列,涉及足够数量的例子,即分布和平衡像素对比,我们从标签源数据的统计中将每个语义类别的真正分布分布分布。此外目标可以通过一个隐含的P日面的上的约束,同时进行一个不固定化的实验,同时显示一个无穷度的模型。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员