Using the standard finite element method (FEM) to solve general partial differential equations, the round-off error is found to be proportional to $N^{\beta_{\rm R}}$, with $N$ the number of degrees of freedom (DoFs) and $\beta_{\rm R}$ a coefficient. A method which uses a few cheap numerical experiments is proposed to determine the coefficient of proportionality and $\beta_{\rm R}$ in various space dimensions and FEM packages. Using the coefficients obtained above, the strategy put forward in \cite{liu386balancing} for predicting the highest achievable accuracy $E_{\rm min}$ and the associated optimal number of DoFs $N_{\rm opt}$ for specific problems is extended to general problems. This strategy allows predicting $E_{\rm min}$ accurately for general problems, with the CPU time for obtaining the solution with the highest accuracy $E_{\rm min}$ typically reduced by 60\%--90\%.
翻译:使用标准限量元素方法(FEM)解决一般部分差异方程,圆差与美元成正比,以美元计算自由度(DoFs)和美元(Beta ⁇ rm R})系数。建议采用一些廉价的数字实验方法,确定相称系数和不同空间维度和FEM包件中的美元(BEM)值。使用上述系数,以\cite{liu386平衡}为预测最高可实现精确度($_rm min}提出的战略,以及特定问题的相关最佳数额(DOFs $Nürm op})扩大到一般问题。这一战略允许精确预测一般问题所需的美元(perm min)值,而CPU则有时间以最高精确度($rm min}美元)获得解决方案,通常减少60 ⁇ -90美元。