Fracture produces new mesh fragments that introduce additional degrees of freedom in the system dynamics. Existing finite element method (FEM) based solutions suffer from an explosion in computational cost as the system matrix size increases. We solve this problem by presenting a graph-based FEM model for fracture simulation that is remeshing-free and easily scales to high-resolution meshes. Our algorithm models fracture on the graph induced in a volumetric mesh with tetrahedral elements. We relabel the edges of the graph using a computed damage variable to initialize and propagate fracture. We prove that non-linear, hyper-elastic strain energy is expressible entirely in terms of the edge lengths of the induced graph. This allows us to reformulate the system dynamics for the relabeled graph without changing the size of system dynamics matrix and thus prevents the computational cost from blowing up. The fractured surface has to be reconstructed explicitly only for visualization purposes. We simulate standard laboratory experiments from structural mechanics and compare the results with corresponding real-world experiments. We fracture objects made of a variety of brittle and ductile materials, and show that our technique offers stability and speed that is unmatched in current literature.
翻译:裂缝产生新的网状碎片,在系统动态中引入更多的自由度。 现有的有限元素法(FEM)的解决方案在系统矩阵大小增加时会受到计算成本爆炸的影响。 我们通过展示一个基于图形的骨折模拟FEM模型来解决该问题,该模型将无损重现,并且很容易地缩到高清晰度的 meshes。 我们的算法模型在用四面元素的体积网块引出的图上产生骨折。 我们用一个计算损坏变量对图的边缘进行重新标签,以初始化和扩散骨折。 我们证明非线性、超弹性菌株的能量完全可以以引出图的边缘长度表示。 这使我们能够在不改变系统动态矩阵大小的情况下重新配置重标图的系统动态,从而防止计算成本的上升。 断裂的表面只能为可视化目的进行明确重建。 我们用结构力模拟标准实验室实验,并将结果与相应的现实实验进行比较。 我们用各种易碎和感动材料制成的断裂物体, 显示我们的技术能够使当前文学中的稳定性和速度变得不相配。