For many applications, drones are required to operate entirely or partially autonomously. To fly completely or partially on their own, drones need access to location services to get navigation commands. While using the Global Positioning System (GPS) is an obvious choice, GPS is not always available, can be spoofed or jammed, and is highly error-prone for indoor and underground environments. The ranging method using beacons is one of the popular methods for localization, specially for indoor environments. In general, localization error in this class is due to two factors: the ranging error and the error induced by the relative geometry between the beacons and the target object to localize. This paper proposes OPTILOD (Optimal Beacon Placement for High-Accuracy Indoor Localization of Drones), an optimization algorithm for the optimal placement of beacons deployed in three-dimensional indoor environments. OPTILOD leverages advances in Evolutionary Algorithms to compute the minimum number of beacons and their optimal placement to minimize the localization error. These problems belong to the Mixed Integer Programming (MIP) class and are both considered NP-Hard. Despite that, OPTILOD can provide multiple optimal beacon configurations that minimize the localization error and the number of deployed beacons concurrently and time efficiently.
翻译:对于许多应用程序,无人驾驶飞机必须完全或部分自主操作。要完全或部分地自行飞行,无人驾驶飞机需要进入定位服务以获得导航指令。虽然使用全球定位系统是一个显而易见的选择,但全球定位系统并非总有可供选择的,全球定位系统也可能被放置或卡住,而且对室内和地下环境而言,这种测距方法极易出错。使用信标的测距方法是广受欢迎的定位方法之一,特别是针对室内环境。一般而言,这一类的定位错误是由于两个因素造成的:信标与目标目标对象之间的相对几何误差和误差。本文提议使用LOSILOD(高精确度地对Droones室内定位的Opitimal Beacon定位),这是在三维室内环境中部署信标的最佳定位的最佳算法。 ALILOD利用进化 Algoorits的进步来计算信标的最低信标数和最佳位置定位误差。这些问题属于混合的 Integer编程(MIP) 类,并且被视为最佳的当地信标配置。