The past few years have witnessed an increasing interest in improving the perception performance of LiDARs on autonomous vehicles. While most of the existing works focus on developing new deep learning algorithms or model architectures, we study the problem from the physical design perspective, i.e., how different placements of multiple LiDARs influence the learning-based perception. To this end, we introduce an easy-to-compute information-theoretic surrogate metric to quantitatively and fast evaluate LiDAR placement for 3D detection of different types of objects. We also present a new data collection, detection model training and evaluation framework in the realistic CARLA simulator to evaluate disparate multi-LiDAR configurations. Using several prevalent placements inspired by the designs of self-driving companies, we show the correlation between our surrogate metric and object detection performance of different representative algorithms on KITTI through extensive experiments, validating the effectiveness of our LiDAR placement evaluation approach. Our results show that sensor placement is non-negligible in 3D point cloud-based object detection, which will contribute up to 10% performance discrepancy in terms of average precision in challenging 3D object detection settings. We believe that this is one of the first studies to quantitatively investigate the influence of LiDAR placement on perception performance.
翻译:在过去几年里,人们越来越关心如何改进LiDARs对自主车辆的认知性能。虽然大多数现有工作都侧重于开发新的深程学习算法或模型结构,但我们从物理设计角度来研究这一问题,即多种LiDARs的不同位置如何不同地影响基于学习的观念。为此,我们引入了一种易于计算的信息理论替代指标,以定量和快速评估LiDAR对不同类型物体的3D探测定位。我们还在现实的 CARLA模拟器中介绍了一个新的数据收集、检测模式培训和评价框架,以评价不同的多功能设计或模型结构。我们利用由自我驱动公司的设计所启发的几种普遍位置,展示了我们通过广泛实验在KITTI上不同代表算法的代数和对象检测性能之间的相互关系。我们的结果显示,基于3D点的物体探测性能是不可忽略的,这将促成10 %的业绩差异。我们通过对3D的平均测算法的测算结果进行一项挑战性能研究。