A good optical flow estimation is crucial in many video analysis and restoration algorithms employed in application fields like media industry, industrial inspection and automotive. In this work, we investigate how well optical flow algorithms perform qualitatively when integrated into a state of the art video denoising algorithm. Both classic optical flow algorithms (e.g. TV-L1) as well as recent deep learning based algorithm (like RAFT or BMBC) will be taken into account. For the qualitative investigation, we will employ realistic content with challenging characteristic (noisy content, large motion etc.) instead of the standard images used in most publications.
翻译:良好的光学流量估计对于媒体行业、工业检查和汽车等应用领域采用的许多视频分析和恢复算法至关重要。 在这项工作中,我们调查光学流量算法在融入最新水平的视频分解算法时质量表现如何。 将考虑到经典光学流量算法(如TV-L1)和最近的深层次学习算法(如RAFT或BMBC),对于定性调查,我们将采用具有挑战性特点(含意内容、大动作等)的现实内容,而不是大多数出版物使用的标准图像。