Nanodrone swarm is formulated by multiple light-weight and low-cost nanodrones to perform the tasks in very challenging environments. Therefore, it is essential to estimate the relative position of nanodrones in the swarm for accurate and safe platooning in inclement indoor environment. However, the vision and infrared sensors are constrained by the line-of-sight perception, and instrumenting extra motion sensors on drone's body is constrained by the nanodrone's form factor and energy-efficiency. This paper presents the design, implementation and evaluation of RFDrone, a system that can sense the relative position of nanodrone in the swarm using wireless signals, which can naturally identify each individual nanodrone. To do so, each light-weight nanodrone is attached with a RF sticker (i.e., called RFID tag), which will be localized by the external RFID reader in the inclement indoor environment. Instead of accurately localizing each RFID-tagged nanodrone, we propose to estimate the relative position of all the RFID-tagged nanodrones in the swarm based on the spatial-temporal phase profiling. We implement an end-to-end physical prototype of RFDrone. Our experimental results show that RFDrone can accurately estimate the relative position of nanodrones in the swarm with average relative localization accuracy of around 0.95 across x, y and z axis, and average accuracy of around 0.93 for nanodrone swarm's geometry estimation.


翻译:纳米探测器和红外传感器受到视线感知的限制,无人机体上仪表外传感器受到纳米探测器形式因素和能源效率的制约。本文介绍了RFDrone的设计、实施和评估,该系统使用无线信号可以自然识别每个纳米探测器,从而可以自然地识别每个纳米探矿场的相对位置。要做到这一点,每个轻量纳米探空探测器都配有RFC粘贴剂(即称为RFID标签),外部RFID读者将在隐蔽室内环境中对无人机体进行局部定位。我们提议对RFID每颗被标记的RFD纳罗纳进行精确的本地定位,而不是精确地将RFD纳纳罗的纳米探空仪在温中相对位置进行定位。我们提议,根据RFDS的相对空间-时序分析结果,用RFD的相对空间-时序分析结果,用RFDS的相对空间-时序模型进行精确的实地分析。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年6月8日
Arxiv
0+阅读 · 2022年6月6日
Arxiv
0+阅读 · 2022年5月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员