The proposed method in this paper is designed to address the problem of time series forecasting. Although some exquisitely designed models achieve excellent prediction performances, how to extract more useful information and make accurate predictions is still an open issue. Most of modern models only focus on a short range of information, which are fatal for problems such as time series forecasting which needs to capture long-term information characteristics. As a result, the main concern of this work is to further mine relationship between local and global information contained in time series to produce more precise predictions. In this paper, to satisfactorily realize the purpose, we make three main contributions that are experimentally verified to have performance advantages. Firstly, original time series is transformed into difference sequence which serves as input to the proposed model. And secondly, we introduce the global atrous sliding window into the forecasting model which references the concept of fuzzy time series to associate relevant global information with temporal data within a time period and utilizes central-bidirectional atrous algorithm to capture underlying-related features to ensure validity and consistency of captured data. Thirdly, a variation of widely-used asymmetric convolution which is called semi-asymmetric convolution is devised to more flexibly extract relationships in adjacent elements and corresponding associated global features with adjustable ranges of convolution on vertical and horizontal directions. The proposed model in this paper achieves state-of-the-art on most of time series datasets provided compared with competitive modern models.


翻译:本文件中的拟议方法旨在解决时间序列预测问题。虽然一些设计精美的模型取得了出色的预测业绩,但如何获取更有用的信息和作出准确的预测仍然是一个未决问题。大多数现代模型仅侧重于短范围的信息,对于诸如时间序列预测等需要捕捉长期信息特征的问题来说,这些信息是致命的。因此,这项工作的主要关切是进一步挖掘时间序列中所包含的地方和全球信息之间的关系,以得出更精确的预测。在本文件中,为了令人满意地实现目的,我们做出了三项主要贡献,即经过实验核实,从而具有业绩优势。首先,最初的时间序列转变为差异序列,作为对拟议模型的投入。第二,我们将全球的无源滑动窗口引入预报模型,其中提到模糊时间序列的概念,以便在一个时限内将相关的全球信息与时间数据联系起来,并利用中央双向直线算法来捕捉基本相关特征,以确保所采集的数据的有效性和一致性。第三,广泛使用的不对称的不对称变变式,即为半无序的竞争性序列,转换为拟议模式的投入。第二,我们把全球的滑动窗口引入了预测模型,以更灵活的方式将全球相近的纵向变换为对比的轨道。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员