This paper presents a novel dynamic network autoregressive conditional heteroscedasticity (ARCH) model based on spatiotemporal ARCH models to forecast volatility in the US stock market. To improve the forecasting accuracy, the model integrates temporally lagged volatility information and information from adjacent nodes, which may instantaneously spill across the entire network. The model is also suitable for high-dimensional cases where multivariate ARCH models are typically no longer applicable. We adopt the theoretical foundations from spatiotemporal statistics and transfer the dynamic ARCH model for processes to networks. This new approach is compared with independent univariate log-ARCH models. We could quantify the improvements due to the instantaneous network ARCH effects, which are studied for the first time in this paper. The edges are determined based on various distance and correlation measures between the time series. The performances of the alternative networks' definitions are compared in terms of out-of-sample accuracy. Furthermore, we consider ensemble forecasts based on different network definitions.


翻译:本文提出一种基于时空ARCH模型的动态网络自回归条件异方差(ARCH)模型,用于预测美国股市的波动性。为了提高预测精度,该模型融合了时间滞后的波动率信息和相邻节点的信息,这可能会即时涉及到整个网络。该模型还适用于高维情况,而多元ARCH模型通常不再适用于高维情况。我们采用时空统计学的理论基础,将动态ARCH模型转化为网络形式,这种新方法与独立的单变量对数ARCH模型进行比较。我们可以量化由于即时网络ARCH效应带来的改进,这是本文首次研究。边缘根据时间序列之间的不同距离和相关性度量进行确定。各种网络定义的性能在样本外精度方面进行比较。此外,我们考虑基于不同网络定义的集成预测。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
61+阅读 · 2020年3月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员