Targeting simulations on parallel hardware architectures, this paper presents computational kernels for efficient computations in mortar finite element methods. Mortar methods enable a variationally consistent imposition of coupling conditions at high accuracy, but come with considerable numerical effort and cost for the evaluation of the mortar integrals to compute the coupling operators. In this paper, we identify bottlenecks in parallel data layout and domain decomposition that hinder an efficient evaluation of the mortar integrals. We then propose a set of computational strategies to restore optimal parallel communication and scalability for the core kernels devoted to the evaluation of mortar terms. We exemplarily study the proposed algorithmic components in the context of three-dimensional large-deformation contact mechanics, both for cases with fixed and dynamically varying interface topology, yet these concepts can naturally and easily be transferred to other mortar applications, e.g. classical meshtying problems. To restore parallel scalability, we employ overlapping domain decompositions of the interface discretization independent from the underlying volumes and then tackle parallel communication for the mortar evaluation by a geometrically motivated reduction of ghosting data. Using three-dimensional contact examples, we demonstrate strong and weak scalability of the proposed algorithms up to 480 parallel processes as well as study and discuss improvements in parallel communication related to mortar finite element methods. For the first time, dynamic load balancing is applied to mortar contact problems with evolving contact zones, such that the computational work is well balanced among all parallel processors independent of the current state of the simulation.
翻译:本文针对平行硬件结构进行模拟,介绍了用于在迫击炮限定元素元素方法中高效计算的各种计算内核; 迫击炮方法使得以高精确度不同的方式对混合条件进行不同一致的组合,但对于用于计算组合操作员的迫击炮组件进行评估,则付出了相当大的数字努力和成本; 在本文件中,我们找出了平行数据布局和域分解中的瓶颈,这些瓶颈妨碍了对迫击炮组件的高效评估; 然后,我们提出了一套计算战略,以恢复用于评估迫击炮术语的所有核心核心内核的最佳平行通信和缩放; 我们举例说明了在三维大畸形接触机制的背景下拟议中的算法组成部分,对于具有固定和动态不同界面表象学的案例来说,但是这些概念可以自然和容易地转移到其他迫击炮应用程序,例如典型的模层问题。 为了恢复平行的缩放,我们采用了一套重叠的域分解法,将连接器与基本数量分开,然后通过以几何动机减少当前图像化的大规模变形转换数据来进行平行的交流。 我们用三维相比标准联系方法, 将当前不断升级的运算的方法, 将模型的连成一个稳定的连成一个稳定的运法,我们展示了与不断递化的递化的顺序联系过程。