Distance-based regression model, as a nonparametric multivariate method, has been widely used to detect the association between variations in a distance or dissimilarity matrix for outcomes and predictor variables of interest. Based on it, a pseudo-$F$ statistic which partitions the variation in distance matrices is often constructed to achieve the aim. To the best of our knowledge, the statistical properties of the pseudo-$F$ statistic has not yet been well established in the literature. To fill this gap, we study the asymptotic null distribution of the pseudo-$F$ statistic and show that it is asymptotically equivalent to a mixture of chi-squared random variables. Given that the pseudo-$F$ test statistic has unsatisfactory power when the correlations of the response variables are large, we propose a square-root $F$-type test statistic which replaces the similarity matric with its square root. The asymptotic null distribution of the new test statistic and power of both tests are also investigated. Simulation studies are conducted to validate the asymptotic distributions of the tests and demonstrate that the proposed test has more robust power than the pseudo-$F$ test. Both test statistics are exemplified with a gene expression dataset for a prostate cancer pathway. Keywords: Asymptotic distribution, Chi-squared-type mixture, Nonparametric test, Pseudo-$F$ test, Similarity matrix.


翻译:以远程为基础的回归模型,作为一种非参数性多变方法,已被广泛用于检测在距离或异差矩阵中的结果和预测值相关变量的变量之间的关联。 以它为基础,假- 美元统计将距离矩阵的差异分隔开来,通常是为了达到目标而构建的。 据我们所知,伪- 美元统计的统计属性尚未在文献中很好确立。 为了填补这一空白,我们研究了假- F$统计数据的无约束无约束分布,并表明它与奇- qual 随机变量的混合相仿。 鉴于假- F$测试数据在响应变量的关联性较大时具有不令人满意的能量,我们建议采用平方块 $ 的测试, 以正根取代相似的矩阵。 为了填补这一空白, 我们还研究了伪- F美元统计数据的无约束性分布。 模拟研究是为了验证测试的“基- 美元” 测试的基质矩阵值分布, 并表明拟议测试的“基- 基数” 测试显示“ 基数” 的测试型数据类型。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员