This paper considers the problem of nonparametric quantile regression under the assumption that the target conditional quantile function is a composition of a sequence of low-dimensional functions. We study the nonparametric quantile regression estimator using deep neural networks to approximate the target conditional quantile function. For convenience, we shall refer to such an estimator as a deep quantile regression (DQR) estimator. We establish non-asymptotic error bounds for the excess risk and the mean integrated squared errors of the DQR estimator. Our results show that the DQR estimator has an oracle property in the sense that it achieves the nonparametric minimax optimal rate determined by the intrinsic dimension of the underlying compositional structure of the conditional quantile function, not the ambient dimension of the predictor. Therefore, DQR is able to mitigate the curse of dimensionality under the assumption that the conditional quantile function has a compositional structure. To establish these results, we analyze the approximation error of a composite function by neural networks and show that the error rate only depends on the dimensions of the component functions, instead of the ambient dimension of the function. We apply our general results to several important statistical models often used in mitigating the curse of dimensionality, including the single index, the additive, the projection pursuit, the univariate composite, and the generalized hierarchical interaction models. We explicitly describe the prefactors in the error bounds in terms of the dimensionality of the data and show that the prefactors depends on the dimensionality linearly or quadratically in these models.
翻译:本文根据以下假设考虑非对称量化回归的问题: 目标有条件量化函数是低维函数序列的构成。 我们用深神经网络研究非对称量化回归估计值, 以近似目标有条件量化函数。 为方便起见, 我们应该将这种估算值称为深度量化回归( DQR) 估测仪。 我们为超风险和DQR 估测器的平均集成正方形错误设定了非默认误差界限。 我们的结果表明, DQR 估测器具有一个极值属性, 因为它可以达到由条件量化函数的内在构成结构( 而不是预测器的环境维度)。 因此, DQR 能够根据有条件的定量函数具有组成性结构的假设, 建立非默认误差界限。 为了确定这些结果, 我们分析了由内空网络的复合函数对一个极值错误属性的属性属性属性, 因为它可以实现非参数的微量微缩缩缩缩缩缩缩缩缩缩缩缩写值, 并且显示, 我们使用的一些重要统计模型的精确度函数只能用于这些数值的精确度。