Subspace-valued functions arise in a wide range of problems, including parametric reduced order modeling (PROM). In PROM, each parameter point can be associated with a subspace, which is used for Petrov-Galerkin projections of large system matrices. Previous efforts to approximate such functions use interpolations on manifolds, which can be inaccurate and slow. To tackle this, we propose a novel Bayesian nonparametric model for subspace prediction: the Gaussian Process Subspace regression (GPS) model. This method is extrinsic and intrinsic at the same time: with multivariate Gaussian distributions on the Euclidean space, it induces a joint probability model on the Grassmann manifold, the set of fixed-dimensional subspaces. The GPS adopts a simple yet general correlation structure, and a principled approach for model selection. Its predictive distribution admits an analytical form, which allows for efficient subspace prediction over the parameter space. For PROM, the GPS provides a probabilistic prediction at a new parameter point that retains the accuracy of local reduced models, at a computational complexity that does not depend on system dimension, and thus is suitable for online computation. We give four numerical examples to compare our method to subspace interpolation, as well as two methods that interpolate local reduced models. Overall, GPS is the most data efficient, more computationally efficient than subspace interpolation, and gives smooth predictions with uncertainty quantification.


翻译:在PROM中,每个参数点都可以与子空间相联,用于Petrov-Galerkin大型系统矩阵的预测。以前为接近这些功能而作的努力都使用对多元的内插,这种内插可能是不准确和缓慢的。为了解决这个问题,我们提出了一个新的巴伊西亚非对称模型,用于子空间预测:高山进程亚空间回归(GPS)模型。这种方法既具有极端性,又具有内在性:随着Euclidean空间的多变量高斯分布,它可以在Gaussian多个子空间上产生一个联合概率模型,用于Petrov-Galerkin对大型系统矩阵的预测。以前为接近这些功能而作的努力使用对多元体的内插图,这种图可能是不准确的;为了解决这个问题,我们提出了一种新的巴伊西亚非参数模型:高斯进程次空间回归(GPMS)模型。这种方法在一个新的参数点上提供了一种可比较性的预测性预测性预测,它保持当地降低的模型的准确性,在EULS-CLO的多维度中,这种模型是固定的多面的多面的分数计算方法,因此我们比较了系统之间的系统之间的计算方法是比较系统之间的内部的数值,而使系统之间的精确性模型成为了两个不同的计算方法,我们之间的精确性模型,我们之间的精确性模型,我们之间的计算方法,我们之间的精确性模型,我们之间的计算方法是比较了两个不同的计算方法,以便比较了两个不同的计算。

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2017年7月7日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2017年7月7日
Top
微信扫码咨询专知VIP会员