When to initiate treatment on patients is an important problem in many medical studies such as AIDS and cancer. In this article, we formulate the treatment initiation time problem for time-to-event data and propose an optimal individualized regime that determines the best treatment initiation time for individual patients based on their characteristics. Different from existing optimal treatment regimes where treatments are undertaken at a pre-specified time, here new challenges arise from the complicated missing mechanisms in treatment initiation time data and the continuous treatment rule in terms of initiation time. To tackle these challenges, we propose to use restricted mean residual lifetime as a value function to evaluate the performance of different treatment initiation regimes, and develop a nonparametric estimator for the value function, which is consistent even when treatment initiation times are not completely observable and their distribution is unknown. We also establish the asymptotic properties of the resulting estimator in the decision rule and its associated value function estimator. In particular, the asymptotic distribution of the estimated value function is nonstandard, which follows a weighted chi-squared distribution. The finite-sample performance of the proposed method is evaluated by simulation studies and is further illustrated with an application to a breast cancer data.
翻译:在诸如艾滋病和癌症等许多医学研究中,何时开始治疗病人是一个重要的问题。在本条中,我们为时间到活动的数据提出治疗开始时间问题,并提出一个最佳的个人化制度,根据个别病人的特点确定最佳治疗开始时间;不同于在预先规定的时间进行治疗的现有最佳治疗制度,这里的新挑战来自治疗开始时间数据中复杂的缺失机制以及开始时间方面的连续治疗规则。为了应对这些挑战,我们提议使用有限的平均剩余寿命作为评估不同治疗启动制度绩效的值值函数,并为价值函数开发一个非参数性估算符,即使开始治疗的时间并非完全可见,而且其分布也不明,这种估算也是一致的。我们还确定了决定规则及其相关价值函数估计结果的随机性特征。特别是,估计价值功能的无症状分布不标准,随后是加权的等级分布。通过模拟研究对拟议方法的定值估值性性表现进行了评估,并用乳腺癌数据进一步说明。