Despite the growing interest in causal and statistical inference for settings with data dependence, few methods currently exist to account for missing data in dependent data settings; most classical missing data methods in statistics and causal inference treat data units as independent and identically distributed (i.i.d.). We develop a graphical modeling based framework for causal inference in the presence of entangled missingness, defined as missingness with data dependence. We distinguish three different types of entanglements that can occur, supported by real-world examples. We give sound and complete identification results for all three settings. We show that existing missing data models may be extended to cover entanglements arising from (1) target law dependence and (2) missingness process dependence, while those arising from (3) missingness interference require a novel approach. We demonstrate the use of our entangled missingness framework on synthetic data. Finally, we discuss how, subject to a certain reinterpretation of the variables in the model, our model for missingness interference extends missing data methods to novel missing data patterns in i.i.d. settings.
翻译:尽管越来越多的人对存在数据依赖关系的因果和统计推断感兴趣,但目前几乎没有方法可以解决具有依赖性数据设置中的缺失数据问题。统计和因果推断中的大多数经典缺失数据方法都将数据单元视为独立且同分布(i.i.d.)。我们基于图形建模框架开发了一种用于解决缺失数据问题的方法,使得在存在数据依赖关系的情况下进行因果推断成为可能。我们区分了可以发生的三种不同类型的纠缠,这些纠缠都有现实世界的例子支持。我们对所有三种设置都给出了可靠而完整的鉴别结果。我们展示了现有的缺失数据模型如何扩展到覆盖由(1)目标依赖关系和(2)缺失过程依赖关系引起的纠缠,而由(3)缺失干扰引起的纠缠则需要采用新方法。我们通过合成数据演示了使用我们的缺失数据纠缠框架的用途。最后,我们讨论了如何在一定程度上重新解释模型中的变量,从而使我们关于缺失数据干扰的模型扩展到i.i.d.设置中的新缺失数据图案。