项目名称: 带有复杂多元数据的非参数非线性结构方程模型:贝叶斯分析

项目编号: No.11301555

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 潘俊豪

作者单位: 中山大学

项目金额: 22万元

中文摘要: 结构方程模型是公认的研究多元相关数据的重要方法。实际研究中的多元数据集往往具有复杂的数据结构,经常同时包含连续数据、分类数据、异构数据和缺失数据(特别是不可忽略缺失数据),现有的模型和软件都难以处理。本项目拟建立崭新的带有复杂多元数据的非参数非线性结构方程模型,除了能够有效处理上述的复杂多元数据之外,更重要的是,该模型创新地将非参数回归和结构方程模型相结合,对涉及潜变量的未知光滑函数进行非参数建模,以求更准确细致地刻画潜变量之间的关系。在贝叶斯方法的框架下,结合P-样条技术,数据增广和马尔科夫链蒙特卡洛方法,本项目将集中研究和探讨有效的统计分析方法,包括未知参数估计、未知光滑函数估计以及模型选择等。另外,本项目还将致力于把提出的模型应用到实际研究问题当中,以更好地解决其他应用学科中复杂多元数据分析的问题。本项目完成后,将把所编写的相关电脑程序放在互联网上供其他有需要的研究者参考和使用。

中文关键词: 潜变量;复杂多元数据;非参数建模;贝叶斯方法;结构方程模型

英文摘要: There is often the need to assess interrelationships among latent variables in behavioral, social and psychological research. Structural equation models (SEMs) comprise a flexible class of models for modeling multivariate correlated data to analyze the interrelationships among latent variables. Basically, SEMs are formulated by a measurement model, which is a confirmatory factor analysis model for grouping correlated manifest variables to "measure" their corresponding latent variables, and a regression type structural model with latent variables for examining the effects of exogenous latent variables on endogenous latent variables of interest. In real data analysis, it is common to encounter multivariate data with complex data structure, which include continuous data, categorical data, heterogeneous data and missing data (especially non-ignorable missing data). However, it is difficult to analyze them simultaneously with the existing models and software. Moreover, because the major objective of SEMs is the analysis of latent variables, the structural model plays the most important role. Although the existing nonlinear SEM has been found to be useful, its structural model is parametric and hence may be too restrictive to many research settings. It is thus necessary to consider more general structural models for

英文关键词: Latent Variables;Complex Multivariate Data;Nonparametric Modeling;Bayesian Approach;Structural Equation Models

成为VIP会员查看完整内容
0

相关内容

贝叶斯方法是贝叶斯学习的基础,它提供了一种计算假设概率的方法,这种方法是基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身而得出的。其方法为,将关于未知参数的先验信息与样本信息综合,再根据贝叶斯公式,得出后验信息,然后根据后验信息去推断未知参数的方法。
【干货书】概率,统计与数据,513页pdf
专知会员服务
136+阅读 · 2021年11月27日
专知会员服务
117+阅读 · 2021年10月6日
【开放书】《现代统计学导论》,549页pdf
专知会员服务
71+阅读 · 2021年7月11日
专知会员服务
73+阅读 · 2021年6月12日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【2022新书】贝叶斯建模与Python建模
专知
18+阅读 · 2022年1月9日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
【新书】感知和行动的贝叶斯模型,348页pdf
【经典书】数理统计学,142页pdf
专知
2+阅读 · 2021年3月25日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
贝叶斯网络入门
论智
15+阅读 · 2017年11月19日
【大数据】数据挖掘与数据分析知识流程梳理
产业智能官
12+阅读 · 2017年9月22日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
21+阅读 · 2020年10月11日
小贴士
相关VIP内容
【干货书】概率,统计与数据,513页pdf
专知会员服务
136+阅读 · 2021年11月27日
专知会员服务
117+阅读 · 2021年10月6日
【开放书】《现代统计学导论》,549页pdf
专知会员服务
71+阅读 · 2021年7月11日
专知会员服务
73+阅读 · 2021年6月12日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
相关资讯
【2022新书】贝叶斯建模与Python建模
专知
18+阅读 · 2022年1月9日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
【新书】感知和行动的贝叶斯模型,348页pdf
【经典书】数理统计学,142页pdf
专知
2+阅读 · 2021年3月25日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
贝叶斯网络入门
论智
15+阅读 · 2017年11月19日
【大数据】数据挖掘与数据分析知识流程梳理
产业智能官
12+阅读 · 2017年9月22日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员