Internet advertisers (buyers) repeatedly procure ad impressions from ad platforms (sellers) with the aim to maximize total conversion (i.e. ad value) while respecting both budget and return-on-investment (ROI) constraints for efficient utilization of limited monetary resources. Facing such a constrained buyer who aims to learn her optimal strategy to acquire impressions, we study from a seller's perspective how to learn and price ad impressions through repeated posted price mechanisms to maximize revenue. For this two-sided learning setup, we propose a learning algorithm for the seller that utilizes an episodic binary-search procedure to identify a revenue-optimal selling price. We show that such a simple learning algorithm enjoys low seller regret when within each episode, the budget and ROI constrained buyer approximately best responds to the posted price. We present simple yet natural buyer's bidding algorithms under which the buyer approximately best responds while satisfying budget and ROI constraints, leading to a low regret for our proposed seller pricing algorithm. The design of our seller algorithm is motivated by the fact that the seller's revenue function admits a bell-shaped structure when the buyer best responds to prices under budget and ROI constraints, enabling our seller algorithm to identify revenue-optimal selling prices efficiently.
翻译:互联网广告商(买方)反复从广告平台(卖方)中获取印象,反复从广告平台(卖方)获取印象,目的是最大限度地实现完全转换(即价值),同时尊重预算和投资回报(ROI)的限制,同时尊重预算和投资回报(ROI)的制约,以便有效利用有限的货币资源。面对这样一个旨在学习最佳战略以获得印象的受限制买方,我们从卖方的角度研究如何通过反复公布的价格机制学习和价格印象,以最大限度地增加收入。关于这一双向学习设置,我们为卖方提出一种学习算法,目的是利用分层的双向双向研究程序,确定收入最佳销售价格。我们表明,在每次交易中,这种简单的学习算法对卖方的遗憾程度较低,每次交易中,预算和ROI对买方的受限制的投标算法基本上都符合已上市价格。我们提出了简单而自然的买方的投标算法,买方在满足预算和ROI限制的同时,对提议卖方的定价方法没有多大的遗憾。我们的卖方算法的设计动力在于,卖方的收入功能承认在买方能够有效销售价格时,使买方能够确定预算价格。