项目名称: 基于单量子点与量子阱能量转移的室温电泵量子光源基础研究

项目编号: No.61275045

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 许兴胜

作者单位: 中国科学院半导体研究所

项目金额: 110万元

中文摘要: 面向量子通信和量子计算应用,室温的电注入单光子源的实现将具有重要的科学意义和实用价值。到目前为止还未看到室温下电注入单光子源的报道。我们将在电注入量子阱发光材料上制作光子晶体孔,控制孔的深度达到量子阱层,在光子晶体孔内引入胶体量子点,控制量子点浓度,制作电极,利用光子晶体增强量子阱发光与量子点的相互作用,利用共振能量转移原理(FRET)实现量子阱发光到量子点的高效率能量转移,实现量子点高效率电注入发光;通过减少量子点浓度,研究新型高效率、室温电注入单光子发射特性。本项目将采用量子阱与量子点的相互作用原理和微加工技术,设计、制作并表征电注入单光子源,并实现室温工作。该研究无论在工作原理上,实现技术以及原型器件上都是创新的。该项目的实施和完成,将在量子通信和量子信息处理中光源方面取得学术创新和高技术突破,达到国际领先水平,将推动我国量子通信和量子信息处理事业的快速发展。

中文关键词: 光子晶体;GaN 量子阱 LED;胶体量子点;单光子;

英文摘要: According to quantum communication and quantum computing applications, room temperature, electrical injected single photon sources display important scientific significance and practical value. Up to the present, room temperature, electrical injected single photon sources have not been reported. We will etch photonic crystal holes into the electrical injected quantum well light-emitting materials, control the depth of the hole to reach the quantum well layer and introduce colloidal quantum dots in the photonic crystal holes. By controlling the concentration of quantum dots and making the electrode, the energy will transfer efficiency from quantum well light-emitting materials to quantum dots under the principle of Forster resonant energy transfer (FRET). Furthermore, we will research on emitting characteristics with high efficiency, room temperature electric injected single photon sources by reducing the concentration of quantum dots. Focusing on the interaction principle between quantum wells and quantum dots, using micro-processing technology, we will design, fabricate and detect electrical injected single photon sources, which will work at room temperature. This study is very innovative in working principle, fabrication technology and prototype devices. The implementation and completion of this project will m

英文关键词: Photonic crystal;GaN quantum well;Colloidal quantum dots;Single photon;

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
11+阅读 · 2018年3月23日
小贴士
相关VIP内容
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员