This paper develops likelihood-based methods for estimation, inference, model selection, and forecasting of continuous-time integer-valued trawl processes. The full likelihood of integer-valued trawl processes is, in general, highly intractable, motivating the use of composite likelihood methods, where we consider the pairwise likelihood in lieu of the full likelihood. Maximizing the pairwise likelihood of the data yields an estimator of the parameter vector of the model, and we prove consistency and, in the short memory case, asymptotic normality of this estimator. When the underlying trawl process has long memory, the asymptotic behaviour of the estimator is more involved; we present some partial results for this case. The pairwise approach further allows us to develop probabilistic forecasting methods, which can be used to construct the predictive distribution of integer-valued time series. In a simulation study, we document the good finite sample performance of the likelihood-based estimator and the associated model selection procedure. Lastly, the methods are illustrated in an application to modelling and forecasting financial bid-ask spread data, where we find that it is beneficial to carefully model both the marginal distribution and the autocorrelation structure of the data.


翻译:本文为估算、推断、模型选择和预测连续时间整值拖网过程制定了基于可能性的方法。总体而言,整值拖网过程的全部可能性是高度棘手的,鼓励使用综合可能性方法,我们考虑对称可能性,而不是完全可能性。数据对称可能性的最大化,得出模型参数矢量的估算值,我们证明这种估算器的一致性,在短的内存中,这种估计器缺乏正常性。当底底拖网过程有很长的记忆时,估计器的消沉行为就更为重要;我们为这个案例提出一些部分结果。对称方法进一步使我们能够制定概率预测方法,用以构建整值时间序列的预测分布。在模拟研究中,我们记录了以概率为基础的估计器和相关的模型选择程序的良好有限样品性能。最后,在模拟和预测财务投标扩散数据的应用中演示了这些方法,我们认为这种方法有利于认真模型的边际分布和自动对比数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
35+阅读 · 2021年1月27日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员