This study focuses on long-term forecasting (LTF) on continuous-time dynamic graph networks (CTDGNs), which is important for real-world modeling. Existing CTDGNs are effective for modeling temporal graph data due to their ability to capture complex temporal dependencies but perform poorly on LTF due to the substantial requirement for historical data, which is not practical in most cases. To relieve this problem, a most intuitive way is data augmentation. In this study, we propose \textbf{\underline{U}ncertainty \underline{M}asked \underline{M}ix\underline{U}p (UmmU)}: a plug-and-play module that conducts uncertainty estimation to introduce uncertainty into the embedding of intermediate layer of CTDGNs, and perform masked mixup to further enhance the uncertainty of the embedding to make it generalize to more situations. UmmU can be easily inserted into arbitrary CTDGNs without increasing the number of parameters. We conduct comprehensive experiments on three real-world dynamic graph datasets, the results demonstrate that UmmU can effectively improve the long-term forecasting performance for CTDGNs.
翻译:本研究关注准确建模连续时间动态图网络中的长期预测问题。现存的连续时间动态图网络可以很好地建模时态图数据,但在长期预测方面表现不佳,因为需要大量历史数据,这在实践中不可行。为了缓解这个问题,最直观的方法是进行数据增强。本研究提出了“不确定性掩蔽混合”(UmmU):这是一个即插即用的模块,可以对中间层嵌入进行不确定性估计,引入不确定性,然后进行掩蔽混合,进一步增强嵌入的不确定性,使其推广到更多情况。而且,UmmU可以轻易插入到任意的连续时间动态图网络中,而不增加参数数量。我们在三个真实的动态图数据集上进行了全面的实验,结果表明,UmmU可以有效提高连续时间动态图网络的长期预测性能。