In this work, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the inner loop and the unforced outer loop are each almost globally asymptotically stable. Our qualitative approach relies on the absence of chain recurrence for non-equilibrium points of the unforced outer loop, the hyperbolicity of equilibria, and the precompactness of forward trajectories. We show that the required structure of the chain recurrent set can be readily verified, and describe two important classes of systems with this property. We also show that the precompactness requirement can be verified by growth rate conditions on the interconnection term coupling the subsystems. Our results stand in contrast to prior works that require either global asymptotic stability of the subsystems (impossible for smooth systems evolving on general manifolds), time scale separation between the subsystems, or strong disturbance robustness properties of the outer loop. The approach has clear applications in stability certification of cascaded controllers for systems evolving on manifolds.
翻译:在这项工作中,我们给出了级联内环和未受强制外环各自几乎全局渐近稳定的充分条件。我们的定性方法依赖于无链重复的非平衡点在未受强制外环中的存在性,平衡点的双曲性以及前向轨道的紧致性。我们展示了链重复集所需的结构可以被轻松验证,并且描述了两个具有该属性的重要类别的系统。我们还表明,可以通过相互连通子系统的生长速率条件来验证预紧性条件。我们的结果与先前的工作形成对比,先前的工作要求子系统全局渐近稳定(对于在一般流形上演化的光滑系统来说是不可能的),子系统之间的时间尺度分离或外环的强扰动鲁棒性属性。该方法在证明演化在流形上的级联控制器的稳定性认证中具有明显的应用。