项目名称: 具有中心奇点的平面多项式可积系统的极限环分岔和临界周期

项目编号: No.11201086

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 梁海华

作者单位: 广东技术师范学院

项目金额: 22万元

中文摘要: 平面动力系统理论在人类社会和自然科学中有着十分广泛的应用。本项目拟研究平面多项式微分动力系统中两个与希尔伯特第十六问题相关的课题:极限环分支和周期函数的单调性。首先,Iliev等人把具有亏格1中心的平面二次系统进行了分类,并对它们的环性进行猜测。我们拟研究其中若干类目前尚未解决的系统的环性,同时研究分支出来的极限环的分布;特别是对于其中的余维4系统,将尝试建立不同于Iliev文中的辅助微分方程,并借助它来改进目前已有文献关于余维4的环性的结果;另外作为对n>2时对希尔伯特第十六问题的探讨,还将研究一些特殊的哈密顿多项式系统在某类扰动下的环性。其次,我们拟研究Chicone猜想及其弱问题:具有中心的二次系统的周期单调性问题。包括:研究具有一定广泛性的Lotka-Volterra系统和至少一类二次可逆系统的周期函数的单调性。

中文关键词: 平面系统;极限环;分支;周期环域;并行算法

英文摘要: The theory of planar polynomials differential equations have an extensive applications in the human society and natural science. This project is going to investigate two issues related to the Hilbert's 16th problem in the planar polynomials dynamic system: Bifurcation of limit cycles and monotonicity of period function. Both of these two issue have close relationship with the theory of the Abel integration. Firstly, the planar quadratic system with a center of genus one are classed by Iliya D. Iliev and his cooperators. A conjecture about the cyclicity of such systems are also proposed by them. In our project, we intend to study the cyclicity of at least one class of unresolved system as well as the distribution of limit cycles bifurcating from the period annuli. In particular, we will study the corresponding issue about the codimension-four system and will try to establish an newauxiliary differential equation by which we will improve the results of the cyclicity of codimension-four system in the literature. Moreover, as a research on the Hilbert's 16th problem for n>2, we are going to investigate the cyclicity of some special Hamiltonian systems under perturbations. Secondly, we are going to study the Chicone's conjecture and it's weak version: the monotonicity of period function of the quadratic sys

英文关键词: planar systems;limit cycles;bifurcation;period annulus;parallelization

成为VIP会员查看完整内容
0

相关内容

图神经网络前沿进展与应用
专知会员服务
147+阅读 · 2022年1月24日
专知会员服务
117+阅读 · 2021年10月6日
【开放书】《现代统计学导论》,549页pdf
专知会员服务
71+阅读 · 2021年7月11日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
65+阅读 · 2021年1月28日
专知会员服务
34+阅读 · 2020年11月26日
《常微分方程》笔记,419页pdf
专知会员服务
72+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
Efficient GlobalPointer:少点参数,多点效果
PaperWeekly
1+阅读 · 2022年2月11日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
小贴士
相关VIP内容
图神经网络前沿进展与应用
专知会员服务
147+阅读 · 2022年1月24日
专知会员服务
117+阅读 · 2021年10月6日
【开放书】《现代统计学导论》,549页pdf
专知会员服务
71+阅读 · 2021年7月11日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
65+阅读 · 2021年1月28日
专知会员服务
34+阅读 · 2020年11月26日
《常微分方程》笔记,419页pdf
专知会员服务
72+阅读 · 2020年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员