We propose a novel deep learning model named ACLNet, for cloud segmentation from ground images. ACLNet uses both deep neural network and machine learning (ML) algorithm to extract complementary features. Specifically, it uses EfficientNet-B0 as the backbone, "`a trous spatial pyramid pooling" (ASPP) to learn at multiple receptive fields, and "global attention module" (GAM) to extract finegrained details from the image. ACLNet also uses k-means clustering to extract cloud boundaries more precisely. ACLNet is effective for both daytime and nighttime images. It provides lower error rate, higher recall and higher F1-score than state-of-art cloud segmentation models. The source-code of ACLNet is available here: https://github.com/ckmvigil/ACLNet.
翻译:我们建议采用名为ACLNet的新颖的深层次学习模型,用于从地面图像中分离云层。ACLNet使用深神经网络和机器学习算法来提取互补功能。具体地说,它使用高效Net-B0作为主干线,用“三重空间金字塔共享”(ASPP)在多个可接受字段中学习,用“全球关注模块”从图像中提取精细细节。ACLNet还使用k-points集群来更精确地提取云层界限。ACLNet对日间和夜间图像都有效。它提供低误差率、更高的回溯率和更高的F1-计值,而不是最先进的云层分割模型。这里可以查到ACLNet的源代码:https://github.com/ckmvigilg/ACLNet。