Recent works on unsupervised domain adaptation (UDA) focus on the selection of good pseudo-labels as surrogates for the missing labels in the target data. However, source domain bias that deteriorates the pseudo-labels can still exist since the shared network of the source and target domains are typically used for the pseudo-label selections. The suboptimal feature space source-to-target domain alignment can also result in unsatisfactory performance. In this paper, we propose CA-UDA to improve the quality of the pseudo-labels and UDA results with optimal assignment, a pseudo-label refinement strategy and class-aware domain alignment. We use an auxiliary network to mitigate the source domain bias for pseudo-label refinement. Our intuition is that the underlying semantics in the target domain can be fully exploited to help refine the pseudo-labels that are inferred from the source features under domain shift. Furthermore, our optimal assignment can optimally align features in the source-to-target domains and our class-aware domain alignment can simultaneously close the domain gap while preserving the classification decision boundaries. Extensive experiments on several benchmark datasets show that our method can achieve state-of-the-art performance in the image classification task.
翻译:最近关于不受监督的域适应(UDA)的工作侧重于选择好伪标签作为目标数据中缺失标签的代名词。然而,由于源和目标域的共享网络通常用于伪标签选择,使得伪标签恶化的源域偏差仍然存在。次最佳空间源对目标域对齐还可能导致不令人满意的性能。在本文件中,我们提议CA-UDA改进伪标签和UDA结果的质量,以优化分配、假标签改进战略和类觉域对齐。我们使用辅助网络来减少伪标签的源域域偏差。我们的直觉是,目标域内的基本语义可以被充分利用,帮助改进从域变源域内源特性推导出的伪标签。此外,我们的最佳分配可以最佳地将源-目标域域的特性与我们分类域对齐,同时缩小域间差距,同时保留分类决定界限。在几个基准数据集上进行的广泛实验显示,我们的方法可以实现任务分类中的状态。