We study the highly practical but comparatively under-studied problem of latent-domain adaptation, where a source model should be adapted to a target dataset that contains a mixture of unlabelled domain-relevant and domain-irrelevant examples. Furthermore, motivated by the requirements for data privacy and the need for embedded and resource-constrained devices of all kinds to adapt to local data distributions, we focus on the setting of feed-forward source-free domain adaptation, where adaptation should not require access to the source dataset, and also be back propagation-free. Our solution is to meta-learn a network capable of embedding the mixed-relevance target dataset and dynamically adapting inference for target examples using cross-attention. The resulting framework leads to consistent improvement on strong ERM baselines. We also show that our framework sometimes even improves on the upper bound of domain-supervised adaptation, where only domain-relevant instances are provided for adaptation. This suggests that human annotated domain labels may not always be optimal, and raises the possibility of doing better through automated instance selection.
翻译:我们研究的是极实际但相对研究不足的潜在领域适应问题,其中源模型应适应包含无标签的域相关和域相关实例组合的目标数据集,此外,由于数据隐私的要求以及需要各种嵌入和资源受限制的装置来适应当地数据分布,我们注重于设置无源源无源的种子适应,而适应不应要求访问源数据集,也不应是无源的。我们的解决办法是,元流网络能够嵌入混合点目标数据集,并动态地调整利用交叉意图对目标示例的推论。由此形成的框架导致强有力的机构风险管理基线的一致改进。我们还表明,我们的框架有时甚至改进了域监督适应的上层,只有域相关实例才提供适应。这表明,人类附加说明的域标签并不总是最理想的,通过自动选择实例提高工作效率的可能性。