We present a novel method, SALAD, for the challenging vision task of adapting a pre-trained "source" domain network to a "target" domain, with a small budget for annotation in the "target" domain and a shift in the label space. Further, the task assumes that the source data is not available for adaptation, due to privacy concerns or otherwise. We postulate that such systems need to jointly optimize the dual task of (i) selecting fixed number of samples from the target domain for annotation and (ii) transfer of knowledge from the pre-trained network to the target domain. To do this, SALAD consists of a novel Guided Attention Transfer Network (GATN) and an active learning function, HAL. The GATN enables feature distillation from pre-trained network to the target network, complemented with the target samples mined by HAL using transfer-ability and uncertainty criteria. SALAD has three key benefits: (i) it is task-agnostic, and can be applied across various visual tasks such as classification, segmentation and detection; (ii) it can handle shifts in output label space from the pre-trained source network to the target domain; (iii) it does not require access to source data for adaptation. We conduct extensive experiments across 3 visual tasks, viz. digits classification (MNIST, SVHN, VISDA), synthetic (GTA5) to real (CityScapes) image segmentation, and document layout detection (PubLayNet to DSSE). We show that our source-free approach, SALAD, results in an improvement of 0.5%-31.3%(across datasets and tasks) over prior adaptation methods that assume access to large amounts of annotated source data for adaptation.


翻译:我们提出了一个新颖的方法,即SALAD,用于将预先训练的“源代码”域网改造为“目标”域,在“目标”域进行注解和标签空间的转变方面预算较少。此外,任务假设由于隐私考虑或其他原因,源数据无法用于适应。我们假设,这些系统需要共同优化以下双重任务:(一)从目标域选择固定数量的免费标本,以及(二)将知识从预训练的“源”域网转换到目标域。为此,SALAD包括一个新的“方向关注传输网络”(GATN)和一个积极的学习功能。GATN能够将源数据从预先训练的网络蒸馏到目标网络,辅之以由HAL利用传输能力和不确定性标准采集的目标样本。SALAD有三个主要好处:(一)任务不具有任务性,可以应用于分类、分解和检测等各种视觉任务。 (二)它可以处理从预训练的“方向关注”传输网络(GATERTN3) 和主动学习空间的转换到目标域域域(SL3) 需要大量的SL任务。(我们的直观数据升级源数据升级的升级到SADADA),我们的升级到高级数据升级到高级数据升级到SAL的升级到高级数据升级到高级数据,(我们进入源的进入源的检索的检索),(我们的一个源的检索),(我们的升级到高级数据,要到高级数据,要到整个的升级到整个的检索),要进行。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月7日
Arxiv
13+阅读 · 2022年1月20日
A Survey on Data Augmentation for Text Classification
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员