Mixtures of experts (MoE) models are a popular framework for modeling heterogeneity in data, for both regression and classification problems in statistics and machine learning, due to their flexibility and the abundance of available statistical estimation and model choice tools. Such flexibility comes from allowing the mixture weights (or gating functions) in the MoE model to depend on the explanatory variables, along with the experts (or component densities). This permits the modeling of data arising from more complex data generating processes when compared to the classical finite mixtures and finite mixtures of regression models, whose mixing parameters are independent of the covariates. The use of MoE models in a high-dimensional setting, when the number of explanatory variables can be much larger than the sample size, is challenging from a computational point of view, and in particular from a theoretical point of view, where the literature is still lacking results for dealing with the curse of dimensionality, for both the statistical estimation and feature selection problems. We consider the finite MoE model with soft-max gating functions and Gaussian experts for high-dimensional regression on heterogeneous data, and its $l_1$-regularized estimation via the Lasso. We focus on the Lasso estimation properties rather than its feature selection properties. We provide a lower bound on the regularization parameter of the Lasso function that ensures an $l_1$-oracle inequality satisfied by the Lasso estimator according to the Kullback--Leibler loss.
翻译:专家混合模型(MoE)模型是一个流行的框架,用于模拟数据中的异异质性,包括统计和机器学习中的回归和分类问题,因为这些模型具有灵活性,而且现有的统计估计和模型选择工具丰富。这种灵活性来自允许MOE模型中的混合权重(或标志功能)与专家(或组成部分密度)一起依赖解释变量。这允许在与传统的固定混合物和回归模型的固定混合物和固定混合物相比,对较复杂的数据生成过程产生的数据进行建模,这些模型的混合参数独立于共变体。在高维环境中使用MOE模型,因为解释变量的数量可能大大大于样本规模,从计算角度,特别是从理论角度来看,这种灵活性来自允许混合权重(或标志功能)取决于解释变量变量的混合权重(与专家(或组成部分密度)),因此,在统计估计和特征选择问题方面,文献仍然缺乏处理维度诅咒的结果。 我们考虑具有软成模量差异的模型,以及高比共变数据高位回归的专家使用MOE模型,而其解释变量的变量数量可能大大大于样本大小,从计算点点数—1的Lasl_1 imal-laximalimationalimalimal press maisal imal imalistialistial imstimstimstimstimstimimpal impalisal impalisal impalisal imstitititital impal impal impaltialtialtial imititital imititaltialtialtialtial lax laxital laxititital lax laxital lax lax lax lax lax laxital laxital ex lax lax lax lax la lax lax la lax laxal laxal laxal lax lax lax lax lax lax lax lax lax lax lax laxil laxil laxil laxisal laxil laxil laxil la