The multi-index model with sparse dimension reduction matrix is a popular approach to circumvent the curse of dimensionality in a high-dimensional regression setting. Building on the single-index analysis by Alquier, P. & Biau, G. (Journal of Machine Learning Research 14 (2013) 243-280), we develop a PAC-Bayesian estimation method for a possibly misspecified multi-index model with unknown active dimension and an orthogonal dimension reduction matrix. Our main result is a non-asymptotic oracle inequality, which shows that the estimation method adapts to the active dimension of the model, the sparsity of the dimension reduction matrix and the regularity of the link function. Under a Sobolev regularity assumption on the link function the estimator achieves the minimax rate of convergence (up to a logarithmic factor) and no additional price is paid for the unknown active dimension.


翻译:带有稀疏维度缩减矩阵的多指数模型是在高维回归设置中避免维度灾难的常用方法。在Alquier, P. 和Biau, G. (2013年机器学习研究期刊14 (2013) 243-280)的单指数分析的基础上,我们开发了PAC-Bayesian估计方法,用于具有未知激活维度和正交维度缩减矩阵的可能被错误规范的多指数模型。我们的主要结果是一个非渐近的神谕不等式,它表明估计方法适应于模型的激活维度、维度缩减矩阵的稀疏性和链接函数的正则性。在链接函数的Sobolev正则性假设下,估计器达到了收敛的极小极值率(有对数因子),且对于未知的激活维度不需要支付额外的代价。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员