The multi-index model with sparse dimension reduction matrix is a popular approach to circumvent the curse of dimensionality in a high-dimensional regression setting. Building on the single-index analysis by Alquier, P. & Biau, G. (Journal of Machine Learning Research 14 (2013) 243-280), we develop a PAC-Bayesian estimation method for a possibly misspecified multi-index model with unknown active dimension and an orthogonal dimension reduction matrix. Our main result is a non-asymptotic oracle inequality, which shows that the estimation method adapts to the active dimension of the model, the sparsity of the dimension reduction matrix and the regularity of the link function. Under a Sobolev regularity assumption on the link function the estimator achieves the minimax rate of convergence (up to a logarithmic factor) and no additional price is paid for the unknown active dimension.
翻译:带有稀疏维度缩减矩阵的多指数模型是在高维回归设置中避免维度灾难的常用方法。在Alquier, P. 和Biau, G. (2013年机器学习研究期刊14 (2013) 243-280)的单指数分析的基础上,我们开发了PAC-Bayesian估计方法,用于具有未知激活维度和正交维度缩减矩阵的可能被错误规范的多指数模型。我们的主要结果是一个非渐近的神谕不等式,它表明估计方法适应于模型的激活维度、维度缩减矩阵的稀疏性和链接函数的正则性。在链接函数的Sobolev正则性假设下,估计器达到了收敛的极小极值率(有对数因子),且对于未知的激活维度不需要支付额外的代价。