This paper considers a multiagent, connected, robotic fleet where the primary functionality of the agents is sensing. A distributed multi-sensor control strategy maximizes the value of the collective sensing capability of the fleet, using an information-driven approach. Each agent individually performs sensor processing (Kalman Filtering and Joint Probabilistic Data Association) to identify trajectories (and associated distributions). Using communications with its neighbors the agents enhance the prediction of the trajectories using a Consensus of Information approach that iteratively calculates the Kullback-Leibler average of trajectory distributions, enabling the calculation of the value of the collective information for the fleet. The dynamics of the agents, the evolution of the identified trajectories for each agent, and the dynamics of individual observed objects are captured as a Partially Observable Markov Decision Process (POMDP). Using this POMDP and applying rollout with receding horizon control, an optimized non-myopic control policy that maximizes the collective fleet information value is synthesized. Simulations are performed for a scenario with three heterogeneous UAVs performing coordinated target tracking that illustrate the proposed methodology and compare the centralized approach with a contemporary sequential multiagent distributed decision technique.


翻译:本文考虑的是多试剂、连接的机器人机队,其代理器的主要功能是感测。分布式多传感器控制战略使用信息驱动的方法,最大限度地发挥机队集体感测能力的价值。每个代理器单独进行传感器处理(卡尔曼过滤和共同概率数据协会)以确定轨迹(和相关分布)。利用与邻国的通信,这些代理器利用一种信息共识方法,迭接计算了轨迹分布的Kullback-Leibell平均数,从而能够计算机队集体信息的价值。这些代理器的动态、为每个代理器确定的轨迹的演变以及观察到的单个物体的动态,作为部分可观测的Markov决定程序(POMDP)被记录下来。利用这一POMDP,并采用重新放弃地平线控制来推广,一种优化的非气象控制政策,以尽量扩大机队的集体信息价值。正在对一种情景进行模拟,由三种可相互兼容的UAVS进行协调的跟踪,每个代理器的轨迹,以及所观察到的单个物体的动态作为部分可观测的Markov决定过程(POMDP)使用这一方法,并比拟的中央分配方法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
已删除
将门创投
6+阅读 · 2019年9月3日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员